
Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

C# Language Reference

Owners: Anders Hejlsberg and Scott Wiltamuth

File: C# Language Reference.doc

Last saved: 6/12/2000

Last printed: 6/26/2000

Version 0.17b

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Notice

This documentation is an early release of the final documentation, which may be changed substantially prior to final
commercial release, and is information of Microsoft Corporation.

This document is provided for informational purposes only and Microsoft makes no warranties, either express or implied,
in this document. Information in this document is subject to change without notice.

The entire risk of the use or the results of the use of this document remains with the user. Complying with all applicable
copyright laws is the responsibility of the user.

Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a
retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering
subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the
furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual
property.

Unpublished work. © 1999-2000 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Visual Basic, and Visual C++ are either registered trademarks or trademarks of Microsoft
Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Table of Contents

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. iii

Table of Contents

1. Introduction... 1
1.1 Hello, world ..1
1.2 Automatic memory management ..2
1.3 Types..4
1.4 Predefined types ..5
1.5 Array types ...7
1.6 Type system unification ...9
1.7 Statements ..10

1.7.1 Statement lists and blocks ..10
1.7.2 Labeled statements and goto statements ..10
1.7.3 Local declarations of constants and variables...11
1.7.4 Expression statements..11
1.7.5 The if statement ..11
1.7.6 The switch statement ...12
1.7.7 The while statement ..12
1.7.8 The do statement...13
1.7.9 The for statement ..13
1.7.10 The foreach statement...13
1.7.11 The break statement and the continue statement ...14
1.7.12 The return statement...14
1.7.13 The throw statement...14
1.7.14 The try statement...14
1.7.15 The checked and unchecked statements ..14
1.7.16 The lock statement...14

1.8 Classes ...14
1.9 Structs ..15
1.10 Interfaces ..15
1.11 Delegates ..17
1.12 Enums...18
1.13 Namespaces ..18
1.14 Properties..19
1.15 Indexers ..20
1.16 Events...21
1.17 Versioning...22
1.18 Attributes ..24

2. Lexical structure .. 27
2.1 Phases of translation...27
2.2 Grammar notation..27
2.3 Pre-processing ...28

2.3.1 Pre-processing declarations ..28
2.3.2 #if, #elif, #else, #endif ...29
2.3.3 Pre-processing control lines ...30
2.3.4 #line ...31
2.3.5 Pre-processing identifiers...31
2.3.6 Pre-processing expressions...31
2.3.7 Interaction with white space...32

2.4 Lexical analysis ...33
2.4.1 Input...33

C# LANGUAGE REFERENCE

iv Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

2.4.2 Input characters...33
2.4.3 Line terminators ..33
2.4.4 Comments...33
2.4.5 White space ..33
2.4.6 Tokens..33

2.5 Processing of Unicode character escape sequences ..34
2.5.1 Identifiers ...34
2.5.2 Keywords ...36
2.5.3 Literals ...36

2.5.3.1 Boolean literals ...36
2.5.3.2 Integer literals ...36
2.5.3.3 Real literals ...37
2.5.3.4 Character literals ...38
2.5.3.5 String literals...39
2.5.3.6 The null literal...40

2.5.4 Operators and punctuators..40

3. Basic concepts .. 41
3.1 Declarations ..41
3.2 Members...43

3.2.1 Namespace members...43
3.2.2 Struct members ...43
3.2.3 Enumeration members ...44
3.2.4 Class members..44
3.2.5 Interface members...44
3.2.6 Array members ...44
3.2.7 Delegate members...44

3.3 Member access..44
3.3.1 Declared accessibility ..44
3.3.2 Accessibility domains ..45
3.3.3 Protected access..47
3.3.4 Accessibility constraints...48

3.4 Signatures and overloading...49
3.5 Scopes ..50

3.5.1 Name hiding..52
3.5.1.1 Hiding through nesting...52
3.5.1.2 Hiding through inheritance...53

3.6 Namespace and type names..54
3.6.1 Fully qualified names ..55

4. Types ... 57
4.1 Value types ...57

4.1.1 Default constructors ..58
4.1.2 Struct types...59
4.1.3 Simple types ...59
4.1.4 Integral types ..60
4.1.5 Floating point types ...61
4.1.6 The decimal type ...62
4.1.7 The bool type ..63
4.1.8 Enumeration types...63

4.2 Reference types...63

Table of Contents

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. v

4.2.1 Class types..64
4.2.2 The object type..64
4.2.3 The string type ..64
4.2.4 Interface types ..64
4.2.5 Array types...64
4.2.6 Delegate types ..64

4.3 Boxing and unboxing ...65
4.3.1 Boxing conversions ...65
4.3.2 Unboxing conversions ...66

5. Variables ... 67
5.1 Variable categories ..67

5.1.1 Static variables..67
5.1.2 Instance variables ..67

5.1.2.1 Instance variables in classes...67
5.1.2.2 Instance variables in structs..68

5.1.3 Array elements..68
5.1.4 Value parameters ..68
5.1.5 Reference parameters ..68
5.1.6 Output parameters...68
5.1.7 Local variables..69

5.2 Default values ...69
5.3 Definite assignment ...69

5.3.1 Initially assigned variables ...72
5.3.2 Initially unassigned variables ...72

5.4 Variable references ..72

6. Conversions ... 73
6.1 Implicit conversions...73

6.1.1 Identity conversion..73
6.1.2 Implicit numeric conversions..73
6.1.3 Implicit enumeration conversions ...74
6.1.4 Implicit reference conversions ..74
6.1.5 Boxing conversions ...74
6.1.6 Implicit constant expression conversions...74
6.1.7 User-defined implicit conversions...75

6.2 Explicit conversions...75
6.2.1 Explicit numeric conversions..75
6.2.2 Explicit enumeration conversions ...76
6.2.3 Explicit reference conversions ..76
6.2.4 Unboxing conversions ...77
6.2.5 User-defined explicit conversions ...77

6.3 Standard conversions ...77
6.3.1 Standard implicit conversions...77
6.3.2 Standard explicit conversions ...78

6.4 User-defined conversions ...78
6.4.1 Permitted user-defined conversions...78
6.4.2 Evaluation of user-defined conversions ...78
6.4.3 User-defined implicit conversions...79
6.4.4 User-defined explicit conversions ...80

7. Expressions .. 81

C# LANGUAGE REFERENCE

vi Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

7.1 Expression classifications ...81
7.1.1 Values of expressions ..82

7.2 Operators..82
7.2.1 Operator precedence and associativity...82
7.2.2 Operator overloading ...83
7.2.3 Unary operator overload resolution...84
7.2.4 Binary operator overload resolution ..85
7.2.5 Candidate user-defined operators..85
7.2.6 Numeric promotions ..85

7.2.6.1 Unary numeric promotions ...86
7.2.6.2 Binary numeric promotions ..86

7.3 Member lookup ...86
7.3.1 Base types ..87

7.4 Function members ...87
7.4.1 Argument lists...89
7.4.2 Overload resolution ...91

7.4.2.1 Applicable function member ..91
7.4.2.2 Better function member ...92
7.4.2.3 Better conversion...92

7.4.3 Function member invocation..92
7.4.3.1 Invocations on boxed instances ..93

7.4.4 Virtual function member lookup ...94
7.4.5 Interface function member lookup ..94

7.5 Primary expressions ...94
7.5.1 Literals ...94
7.5.2 Simple names..94

7.5.2.1 Invariant meaning in blocks ...95
7.5.3 Parenthesized expressions ..96
7.5.4 Member access ...96

7.5.4.1 Identical simple names and type names...98
7.5.5 Invocation expressions ...98

7.5.5.1 Method invocations ...99
7.5.5.2 Delegate invocations..99

7.5.6 Element access.. 100
7.5.6.1 Array access ... 100
7.5.6.2 Indexer access... 100
7.5.6.3 String indexing.. 101

7.5.7 This access ... 101
7.5.8 Base access... 102
7.5.9 Postfix increment and decrement operators ... 102
7.5.10 new operator ... 103

7.5.10.1 Object creation expressions .. 103
7.5.10.2 Array creation expressions ... 104
7.5.10.3 Delegate creation expressions ... 106

7.5.11 typeof operator ... 107
7.5.12 sizeof operator ... 108
7.5.13 checked and unchecked operators... 108

7.6 Unary expressions.. 110
7.6.1 Unary plus operator ... 110
7.6.2 Unary minus operator .. 111
7.6.3 Logical negation operator... 111

Table of Contents

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. vii

7.6.4 Bitwise complement operator ... 111
7.6.5 Indirection operator ... 112
7.6.6 Address operator ... 112
7.6.7 Prefix increment and decrement operators... 112
7.6.8 Cast expressions .. 113

7.7 Arithmetic operators .. 113
7.7.1 Multiplication operator .. 113
7.7.2 Division operator... 114
7.7.3 Remainder operator ... 115
7.7.4 Addition operator .. 116
7.7.5 Subtraction operator .. 117

7.8 Shift operators... 118
7.9 Relational operators... 119

7.9.1 Integer comparison operators ... 120
7.9.2 Floating-point comparison operators... 121
7.9.3 Decimal comparison operators ... 121
7.9.4 Boolean equality operators... 122
7.9.5 Enumeration comparison operators... 122
7.9.6 Reference type equality operators... 122
7.9.7 String equality operators .. 123
7.9.8 Delegate equality operators .. 124
7.9.9 The is operator .. 124

7.10 Logical operators... 124
7.10.1 Integer logical operators... 124
7.10.2 Enumeration logical operators .. 125
7.10.3 Boolean logical operators... 125

7.11 Conditional logical operators.. 125
7.11.1 Boolean conditional logical operators ... 126
7.11.2 User-defined conditional logical operators .. 126

7.12 Conditional operator .. 127
7.13 Assignment operators... 127

7.13.1 Simple assignment... 128
7.13.2 Compound assignment ... 130
7.13.3 Event assignment... 130

7.14 Expression... 130
7.15 Constant expressions .. 131
7.16 Boolean expressions... 132

8. Statements ..133
8.1 End points and reachability... 133
8.2 Blocks... 135

8.2.1 Statement lists... 135
8.3 The empty statement.. 135
8.4 Labeled statements .. 136
8.5 Declaration statements... 136

8.5.1 Local variable declarations ... 136
8.5.2 Local constant declarations .. 137

8.6 Expression statements.. 138
8.7 Selection statements .. 138

8.7.1 The if statement .. 138
8.7.2 The switch statement ... 139

C# LANGUAGE REFERENCE

viii Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

8.8 Iteration statements.. 142
8.8.1 The while statement .. 143
8.8.2 The do statement... 143
8.8.3 The for statement .. 144
8.8.4 The foreach statement... 145

8.9 Jump statements .. 146
8.9.1 The break statement .. 146
8.9.2 The continue statement.. 147
8.9.3 The goto statement... 147
8.9.4 The return statement.. 148
8.9.5 The throw statement .. 149

8.10 The try statement... 150
8.11 The checked and unchecked statements... 152
8.12 The lock statement... 152

9. Namespaces ..155
9.1 Compilation units .. 155
9.2 Namespace declarations ... 155
9.3 Using directives... 156

9.3.1 Using alias directives... 157
9.3.2 Using namespace directives ... 159

9.4 Namespace members ... 161
9.5 Type declarations... 161

10. Classes ..163
10.1 Class declarations .. 163

10.1.1 Class modifiers.. 163
10.1.1.1 Abstract classes ... 163
10.1.1.2 Sealed classes ... 164

10.1.2 Class base specification.. 164
10.1.2.1 Base classes .. 164
10.1.2.2 Interface implementations .. 165

10.1.3 Class body... 166
10.2 Class members .. 166

10.2.1 Inheritance .. 167
10.2.2 The new modifier .. 167
10.2.3 Access modifiers ... 168
10.2.4 Constituent types ... 168
10.2.5 Static and instance members .. 168
10.2.6 Nested types ... 169

10.3 Constants .. 169
10.4 Fields .. 170

10.4.1 Static and instance fields .. 171
10.4.2 Readonly fields.. 172

10.4.2.1 Using static readonly fields for constants .. 172
10.4.2.2 Versioning of constants and static readonly fields .. 172

10.4.3 Field initialization.. 173
10.4.4 Variable initializers.. 173

10.4.4.1 Static field initialization ... 174
10.4.4.2 Instance field initialization ... 174

10.5 Methods .. 175

Table of Contents

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. ix

10.5.1 Method parameters.. 176
10.5.1.1 Value parameters... 177
10.5.1.2 Reference parameters .. 177
10.5.1.3 Output parameters ... 178
10.5.1.4 Params parameters .. 178

10.5.2 Static and instance methods.. 180
10.5.3 Virtual methods ... 180
10.5.4 Override methods .. 182
10.5.5 Abstract methods... 183
10.5.6 External methods ... 184
10.5.7 Method body ... 185
10.5.8 Method overloading... 185

10.6 Properties.. 185
10.6.1 Static properties... 186
10.6.2 Accessors ... 187
10.6.3 Virtual, override, and abstract accessors.. 191

10.7 Events... 193
10.8 Indexers .. 196

10.8.1 Indexer overloading ... 199
10.9 Operators .. 199

10.9.1 Unary operators... 200
10.9.2 Binary operators.. 200
10.9.3 Conversion operators ... 200

10.10 Instance constructors.. 202
10.10.1 Constructor initializers ... 202
10.10.2 Instance variable initializers ... 203
10.10.3 Constructor execution .. 203
10.10.4 Default constructors... 205
10.10.5 Private constructors ... 205
10.10.6 Optional constructor parameters ... 206

10.11 Destructors.. 206
10.12 Static constructors.. 207

10.12.1 Class loading and initialization ... 208

11. Structs ..211
11.1 Struct declarations.. 211

11.1.1 Struct modifiers... 211
11.1.2 Interfaces.. 211
11.1.3 Struct body.. 211

11.2 Struct members.. 211
11.3 Struct examples ... 211

11.3.1 Database integer type... 211
11.3.2 Database boolean type ... 213

12. Arrays ...215
12.1 Array types ... 215

12.1.1 The System.Array type... 216
12.2 Array creation.. 216
12.3 Array element access ... 216
12.4 Array members.. 216
12.5 Array covariance ... 216

C# LANGUAGE REFERENCE

x Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

12.6 Array initializers.. 217

13. Interfaces ..219
13.1 Interface declarations ... 219

13.1.1 Interface modifiers... 219
13.1.2 Base interfaces.. 219
13.1.3 Interface body ... 220

13.2 Interface members ... 220
13.2.1 Interface methods .. 221
13.2.2 Interface properties.. 221
13.2.3 Interface events... 222
13.2.4 Interface indexers .. 222
13.2.5 Interface member access .. 222

13.3 Fully qualified interface member names.. 224
13.4 Interface implementations... 224

13.4.1 Explicit interface member implementations ... 225
13.4.2 Interface mapping .. 227
13.4.3 Interface implementation inheritance .. 229
13.4.4 Interface re-implementation.. 231
13.4.5 Abstract classes and interfaces ... 232

14. Enums ...233
14.1 Enum declarations.. 233
14.2 Enum members.. 234
14.3 Enum values and operations.. 236

15. Delegates...237
15.1 Delegate declarations ... 237

15.1.1 Delegate modifiers... 237

16. Exceptions ..239

17. Attributes ...241
17.1 Attribute classes .. 241

17.1.1 The AttributeUsage attribute ... 241
17.1.2 Positional and named parameters.. 242
17.1.3 Attribute parameter types... 242

17.2 Attribute specification .. 243
17.3 Attribute instances ... 245

17.3.1 Compilation of an attribute ... 245
17.3.2 Run-time retrieval of an attribute instance ... 245

17.4 Reserved attributes... 245
17.4.1 The AttributeUsage attribute ... 246
17.4.2 The Conditional attribute ... 246
17.4.3 The Obsolete attribute ... 248

18. Versioning ...251

19. Unsafe code ...253
19.1 Unsafe code .. 253
19.2 Pointer types.. 253

20. Interoperability...255

Table of Contents

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. xi

20.1 Attributes .. 255
20.1.1 The COMImport attribute ... 255
20.1.2 The COMSourceInterfaces attribute... 255
20.1.3 The COMVisibility attribute ... 255
20.1.4 The DispId attribute ... 256
20.1.5 The DllImport attribute ... 256
20.1.6 The GlobalObject attribute ... 257
20.1.7 The Guid attribute ... 257
20.1.8 The HasDefaultInterface attribute... 257
20.1.9 The ImportedFromCOM attribute ... 257
20.1.10 The In and Out attributes .. 257
20.1.11 The InterfaceType attribute ... 258
20.1.12 The IsCOMRegisterFunction attribute ... 258
20.1.13 The Marshal attribute ... 258
20.1.14 The Name attribute ... 259
20.1.15 The NoIDispatch attribute ... 259
20.1.16 The NonSerialized attribute ... 259
20.1.17 The Predeclared attribute ... 260
20.1.18 The ReturnsHResult attribute ... 260
20.1.19 The Serializable attribute ... 260
20.1.20 The StructLayout attribute ... 260
20.1.21 The StructOffset attribute ... 261
20.1.22 The TypeLibFunc attribute ... 261
20.1.23 The TypeLibType attribute ... 261
20.1.24 The TypeLibVar attribute ... 262

20.2 Supporting enums .. 262

21. References ..265

Chapter 1 Introduction

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 1

1. Introduction

C# is a simple, modern, object oriented, and type-safe programming language derived from C and C++. C#
(pronounced “C sharp”) is firmly planted in the C and C++ family tree of languages, and will immediately be
familiar to C and C++ programmers. C# aims to combine the high productivity of Visual Basic and the raw
power of C++.

C# is provided as a part of Microsoft Visual Studio 7.0. In addition to C#, Visual Studio supports Visual Basic,
Visual C++, and the scripting languages VBScript and JScript. All of these languages provide access to the Next
Generation Windows Services (NWGS) platform, which includes a common execution engine and a rich class
library. The .NET software development kit defines a "Common Language Subset" (CLS), a sort of lingua
franca that ensures seamless interoperability between CLS-compliant languages and class libraries. For C#
developers, this means that even though C# is a new language, it has complete access to the same rich class
libraries that are used by seasoned tools such as Visual Basic and Visual C++. C# itself does not include a class
library.

The rest of this chapter describes the essential features of the language. While later chapters describe rules and
exceptions in a detail-oriented and sometimes mathematical manner, this chapter strives for clarity and brevity at
the expense of completeness. The intent is to provide the reader with an introduction to the language that will
facilitate the writing of early programs and the reading of later chapters.

1.1 Hello, world
The canonical “Hello, world” program can be written in C# as follows:

using System;

class Hello
{

static void Main() {
Console.WriteLine("Hello, world");

}
}

The default file extension for C# programs is .cs, as in hello.cs. Such a program can be compiled with the
command line directive

csc hello.cs

which produces an executable program named hello.exe. The output of the program is:

Hello, world

Close examination of this program is illuminating:

• The using System; directive references a namespace called System that is provided by the .NET
runtime. This namespace contains the Console class referred to in the Main method. Namespaces
provide a hierarchical means of organizing the elements of a class library. A “using” directive enables
unqualified use of the members of a namespace. The “Hello, world” program uses
Console.WriteLine as a shorthand for System.Console.WriteLine. What do these identifiers
denote? System is a namespace, Console is a class defined in that namespace, and WriteLine is a
static method defined on that class.

• The Main function is a static member of the class Hello. Functions and variables are not supported at
the global level; such elements are always contained within type declarations (e.g., class and struct
declarations).

C# LANGUAGE REFERENCE

2 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• The “Hello, world” output is produced through the use of a class library. C# does not itself provide a
class library. Instead, C# uses a common class library that is also used by other languages such as Visual
Basic and Visual C++.

For C and C++ developers, it is interesting to note a few things that do not appear in the “Hello, world”
program.

• The program does not use either “::” or “->” operators. The “::” is not an operator in C# at all, and
the “->” operator is used in only a small fraction of C# programs. C# programs use “.” as a separator in
compound names such as Console.WriteLine.

• The program does not contain forward declarations. Forward declarations are never needed in C#
programs, as declaration order is not significant.

• The program does not use #include to import program text. Dependencies between programs are
handled symbolically rather than with program text. This system eliminates barriers between programs
written in different languages. For example, the Console class could be written in C# or in some other
language.

1.2 Automatic memory management
Manual memory management requires developers to manage the allocation and de-allocation of blocks of
memory. Manual memory management is both time consuming and difficult. C# provides automatic memory
management so that developers are freed from this burdensome task. In the vast majority of cases, this automatic
memory management increases code quality and enhances developer productivity without negatively impacting
either expressiveness or performance.

The example

using System;

public class Stack
{

private Node first = null;

public bool Empty {
get {

return (first == null);
}

}

public object Pop() {
if (first == null)

throw new Exception("Can't Pop from an empty Stack.");
else {

object temp = first.Value;
first = first.Next;
return temp;

}
}

public void Push(object o) {
first = new Node(o, first);

}

class Node
{

public Node Next;

public object Value;

public Node(object value): this(value, null) {}

Chapter 1 Introduction

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 3

public Node(object value, Node next) {
Next = next;
Value = value;

}
}

}

shows a Stack class implemented as a linked list of Node instances. Node instances are created in the Push
method and are garbage collected when no longer needed. A Node instance becomes eligible for garbage
collection when it is no longer possible for any code to access it. For instance, when an item is removed from
the Stack, the associated Node instance becomes eligible for garbage collection.

The example

class Test
{

static void Main() {
Stack s = new Stack();

for (int i = 0; i < 10; i++)
s.Push(i);

while (!s.Empty)
Console.WriteLine(s.Pop());

}
}

shows a test program that uses the Stack class. A Stack is created and initialized with 10 elements, and then
assigned the value null. Once the variable s is assigned null, the Stack and the associated 10 Node instances
become eligible for garbage collection. The garbage collector is permitted to clean up immediately, but is not
required to do so.

For developers who are generally content with automatic memory management but sometimes need fine-grained
control or that extra iota of performance, C# provides the ability to write “unsafe” code. Such code can deal
directly with pointer types, and fix objects to temporarily prevent the garbage collector from moving them. This
“unsafe” code feature is in fact “safe” feature from the perspective of both developers and users. Unsafe code
must be clearly marked in the code with the modifier unsafe, so developers can't possibly use unsafe features
accidentally, and the C# compiler and the execution engine work together to ensure that unsafe code cannot
masquerade as safe code.

The example

using System;

class Test
{

unsafe static void WriteLocations(byte[] arr) {
fixed (byte *p_arr = arr) {

byte *p_elem = p_arr;
for (int i = 0; i < arr.Length; i++) {

byte value = *p_elem;
string addr = int.Format((int) p_elem, "X");
Console.WriteLine("arr[{0}] at 0x{1} is {2}", i, addr, value);
p_elem++;

}
}

}

static void Main() {
byte[] arr = new byte[] {1, 2, 3, 4, 5};
WriteLocations(arr);

}
}

C# LANGUAGE REFERENCE

4 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

shows an unsafe method named WriteLocations that fixes an array instance and uses pointer manipulation to
iterate over the elements and write out the index, value, and location of each. One possible output of the
program is:

arr[0] at 0x8E0360 is 1
arr[1] at 0x8E0361 is 2
arr[2] at 0x8E0362 is 3
arr[3] at 0x8E0363 is 4
arr[4] at 0x8E0364 is 5

but of course the exact memory locations are subject to change.

1.3 Types
C# supports two major kinds of types: value types and reference types. Value types include simple types (e.g.,
char, int, and float), enum types, and struct types. Reference types include class types, interface types,
delegate types, and array types.

Value types differ from reference types in that variables of the value types directly contain their data, whereas
variables of the reference types store references to objects. With reference types, it is possible for two variables
to reference the same object, and thus possible for operations on one variable to affect the object referenced by
the other variable. With value types, the variables each have their own copy of the data, and it is not possible for
operations on one to affect the other.

The example

using System;

class Class1
{

public int Value = 0;
}

class Test
{

static void Main() {
int val1 = 0;
int val2 = val1;
val2 = 123;

Class1 ref1 = new Class1();
Class1 ref2 = ref1;
ref2.Value = 123;

Console.WriteLine("Values: {0}, {1}", val1, val2);
Console.WriteLine("Refs: {0}, {1}", ref1.Value, ref2.Value);

}
}

shows this difference. The output of the program is

Values: 0, 123
Refs: 123, 123

The assignment to the local variable val1 does not impact the local variable val2 because both local variables
are of a value type (int) and each local variable of a value type has its own storage. In contrast, the assignment
ref2.Value = 123; affects the object that both ref1 and ref2 reference.

Developers can define new value types through enum and struct declarations, and can define new reference
types via class, interface, and delegate declarations. The example

using System;

Chapter 1 Introduction

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 5

public enum Color
{

Red, Blue, Green
}

public struct Point
{

public int x, y;
}

public interface IBase
{

void F();
}

public interface IDerived: IBase
{

void G();
}

public class A
{

protected void H() {
Console.WriteLine("A.H");

}
}

public class B: A, IDerived
{

public void F() {
Console.WriteLine("B.F, implementation of IDerived.F");

}

public void G() {
Console.WriteLine("B.G, implementation of IDerived.G");

}
}

public delegate void EmptyDelegate();

shows an example or two for each kind of type declaration. Later sections describe type declarations in greater
detail.

1.4 Predefined types
C# provides a set of predefined types, most of which will be familiar to C and C++ developers.

The predefined reference types are object and string. The type object is the ultimate base type of all other
types.

The predefined value types include signed and unsigned integral types, floating point types, and the types bool,
char, and decimal. The signed integral types are sbyte, short, int, and long; the unsigned integral types
are byte, ushort, uint, and ulong; and the floating point types are float and double.

The bool type is used to represent boolean values: values that are either true or false. The inclusion of bool
makes it easier for developers to write self-documenting code, and also helps eliminate the all-too-common C++
coding error in which a developer mistakenly uses “=” when “==” should have been used. In C#, the example

int i = ...;
F(i);
if (i = 0) // Bug: the test should be (i == 0)
 G();

is invalid because the expression i = 0 is of type int, and if statements require an expression of type bool.

C# LANGUAGE REFERENCE

6 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The char type is used to represent Unicode characters. A variable of type char represents a single 16-bit
Unicode character.

The decimal type is appropriate for calculations in which rounding errors are unacceptable. Common examples
include financial calculations such as tax computations and currency conversions. The decimal type provides
28 significant digits.

The table below lists each of the predefined types, and provides examples of each.

Type Description Examples
object The ultimate base type of all other types object o = new Stack();

string String type; a string is a sequence of Unicode
characters

string s = "Hello";

sbyte 8-bit signed integral type sbyte val = 12;

short 16-bit signed integral type short val = 12;

int 32-bit signed integral type int val = 12;

long 64-bit signed integral type long val1 = 12;
long val2 = 34L;

byte 8-bit unsigned integral type byte val1 = 12;
byte val2 = 34U;

ushort 16-bit unsigned integral type ushort val1 = 12;
ushort val2 = 34U;

uint 32-bit unsigned integral type uint val1 = 12;
uint val2 = 34U;

ulong 64-bit unsigned integral type ulong val1 = 12;
ulong val2 = 34U;
ulong val3 = 56L;
ulong val4 = 78UL;

float Single-precision floating point type float value = 1.23F;

double Double-precision floating point type double val1 = 1.23
double val2 = 4.56D;

bool Boolean type; a bool value is either true or false bool value = true;

char Character type; a char value is a Unicode character char value = 'h';

decimal Precise decimal type with 28 significant digits decimal value = 1.23M;

Each of the predefined types is shorthand for a system-provided type. For example, the keyword int is
shorthand for a struct named System.Int32. The two names can be used interchangeably, though it is
considered good style to use the keyword rather than the complete system type name.

Predefined value types such as int are treated specially in a few ways but are for the most part treated exactly
like other structs. The special treatment that these types receive includes literal support and efficient code
generation. C#’s operator overloading feature enables developers to define types that behave like the predefined
value types. For instance, a Digit struct that supports the same mathematical operations as the predefined
integral types, and that conversion to and from these types.

using System;

Chapter 1 Introduction

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 7

struct Digit
{...}

class Test
{

static void TestInt() {
int a = 1;
int b = 2;
int c = a + b;
Console.WriteLine(c);

}

static void TestDigit() {
Digit a = (Digit) 1;
Digit b = (Digit) 2;
Digit c = a + b;
Console.WriteLine(c);

}

static void Main() {
TestInt();
TestDigit();

}
}

1.5 Array types
Arrays in C# may be single-dimensional or multi-dimensional. Both “rectangular” and “jagged” arrays are
supported.

Single-dimensional arrays are the most common type, so this is a good starting point. The example

using System;

class Test
{

static void Main() {
int[] arr = new int[5];

for (int i = 0; i < arr.Length; i++)
arr[i] = i * i;

for (int i = 0; i < arr.Length; i++)
Console.WriteLine("arr[{0}] = {1}", i, arr[i]);

}
}

creates a single-dimensional array of int values, initializes the array elements, and then prints each of them out.
The program output is:

arr[0] = 0
arr[1] = 1
arr[2] = 4
arr[3] = 9
arr[4] = 16

The type int[] used in the previous example is an array type. Array types are written using a non-array-type
followed by one or more rank specifiers. The example

class Test
{

static void Main() {
int[] a1; // single-dimensional array of int
int[,] a2; // 2-dimensional array of int
int[,,] a3; // 3-dimensional array of int

C# LANGUAGE REFERENCE

8 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

int[][] j2; // "jagged" array: array of (array of int)
int[][][] j3; // array of (array of (array of int))

}
}

shows a variety of local variable declarations that use array types with int as the element type.

Arrays are reference types, and so the declaration of an array variable merely sets aside space for the reference
to the array. Array instances are actually created via array initializers and array creation expressions. The
example

class Test
{

static void Main() {
int[] a1 = new int[] {1, 2, 3};
int[,] a2 = new int[,] {{1, 2, 3}, {4, 5, 6}};
int[,,] a3 = new int[10, 20, 30];

int[][] j2 = new int[3][];
j2[0] = new int[] {1, 2, 3};
j2[1] = new int[] {1, 2, 3, 4, 5, 6};
j2[2] = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9};

}
}

shows a variety of array creation expressions. The variables a1, a2 and a3 denote rectangular arrays, and the
variable j2 denotes a jagged array. It should be no surprise that these terms are based on the shapes of the
arrays. Rectangular arrays always have a rectangular shape. Given the length of each dimension of the array, its
rectangular shape is clear. For example, the length of a3’s three dimensions are 10, 20, and 30 respectively, and
it is easy to see that this array contains 10*20*30 elements.

In contrast, the variable j2 denotes a “jagged” array, or an “array of arrays”. Specifically, j2 denotes an array of
an array of int, or a single-dimensional array of type int[]. Each of these int[] variables can be initialized
individually, and this allows the array to take on a jagged shape. The example gives each of the int[] arrays a
different length. Specifically, the length of j2[0] is 3, the length of j2[1] is 6, and the length of j2[2] is 9.

It is important to note that the element type and number of dimensions are part of an array’s type, but that the
length of each dimension is not part of the array’s type. This split is made clear in the language syntax, as the
length of each dimension is specified in the array creation expression rather than in the array type. For instance
the declaration

int[,,] a3 = new int[10, 20, 30];

has an array type of int[,,] and an array creation expression of new int[10, 20, 30].

For local variable and field declarations, a shorthand form is permitted so that it is not necessary to re-state the
array type. For instance, the example

int[] a1 = new int[] {1, 2, 3};

can be shortened to

int[] a1 = {1, 2, 3};

without any change in program semantics.

It is important to note that the context in which an array initializer such as {1, 2, 3} is used determines the
type of the array being initialized. The example

Chapter 1 Introduction

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 9

class Test
{

static void Main() {
short[] a = {1, 2, 3};
int[] b = {1, 2, 3};
long[] c = {1, 2, 3};

}
}

shows that the same array initializer can be used for several different array types. Because context is required to
determine the type of an array initializer, it is not possible to use an array initializer in an expression context.
The example

class Test
{

static void F(int[] arr) {}

static void Main() {
F({1, 2, 3});

}
}

is not valid because the array initializer {1, 2, 3} is not a valid expression. The example can be rewritten to
explicitly specify the type of array being created, as in

class Test
{

static void F(int[] arr) {}

static void Main() {
F(new int[] {1, 2, 3});

}
}

1.6 Type system unification
C# provides a “unified type system”. All types – including value types – can be treated like objects.
Conceptually speaking, all types derive from object, and so it is possible to call object methods on any value,
even values of “primitive” types such as int. The example

using System;

class Test
{

static void Main() {
Console.WriteLine(3.ToString());

}
}

calls the object-defined ToString method on a constant value of type int.

The example

class Test
{

static void Main() {
int i = 123;
object o = i; // boxing
int j = (int) o; // unboxing

}
}

is more interesting. An int value can be converted to object and back again to int. This example shows both
boxing and unboxing. When a variable of a value type needs to be converted to a reference type, an object box is
allocated to hold the value, and the value is copied into the box. Unboxing is just the opposite. When an object

C# LANGUAGE REFERENCE

10 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

box is cast back to its original value type, the value is copied out of the box and into the appropriate storage
location.

This type system unification provides value types with the benefits of object-ness, and does so without
introducing unnecessary overhead. For programs that don’t need int values to act like object, int values are
simply 32 bit values. For programs that need int’s to behave like objects, this functionality is available on-
demand. This ability to treat value types as objects bridges the gap between value types and reference types that
exists in most languages. For example, the .NET class library includes a Hashtable class that provides an Add
method that takes a Key and a Value.

public class Hashtable
{

public void Add(object Key, object Value) {...}
...

}

Because C# has a unified type system, the users of the Hashtable class can use keys and values of any type,
including value types.

1.7 Statements
C# borrows most of its statements directly from C and C++, though there are some noteworthy additions and
modifications.

1.7.1 Statement lists and blocks
A statement list consists of one or more statements written in sequence, and a block permits multiple statements
to be written in contexts where a single statement is expected. For instance, the example

using System;

class Test
{

static void Main() { // begin block 1
Console.WriteLine("Test.Main");
{ // begin block 2

Console.WriteLine("Nested block");
}

}
}

shows two blocks.

1.7.2 Labeled statements and goto statements
A labeled statement permits a statement to be prefixed by a label, and goto statements can be used to transfer
control to a labeled statement.

The example

using System;

class Test
{

static void Main() {
goto H;

W: Console.WriteLine("world");
return;

H: Console.Write("Hello, ");
goto W;

}
}

Chapter 1 Introduction

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 11

is a convoluted version of the “Hello, world” program. The first statement transfers control to the statement
labeled H. The first part of the message is written and then the next statement transfers control to the statement
labeled W. The rest of the message is written, and the method returns.

1.7.3 Local declarations of constants and variables
A local constant declaration declares one or more local constants, and a local variable declaration declares one
or more local variables.

The example

class Test
{

static void Main() {
const int a = 1;
const int b = 2, c = 3;

int d;
int e, f;
int g = 4, h = 5;

d = 4;
e = 5;
f = 6;

}
}

shows a variety of local constant and variable declarations.

1.7.4 Expression statements
An expression statement evaluates a given expression. The value computed by the expression, if any, is
discarded. Not all expressions are permitted as statements. In particular, expressions such as x + y and x == 1
that have no side effects, but merely compute a value (which will be discarded), are not permitted as statements.

The example

using System;

class Test
{

static int F() {
Console.WriteLine("Test.F");
return 0;

}

static void Main() {
F();

}
}

shows an expression statement. The call to the function F made from Main constitutes an expression statement.
The value that F returns is simply discarded.

1.7.5 The if statement
An if statement selects a statement for execution based on the value of a boolean expression. An if statement
may optionally include an else clause that executes if the boolean expression is false.

The example

using System;

C# LANGUAGE REFERENCE

12 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

class Test
{

static void Main(string[] args) {
if (args.Length == 0)

Console.WriteLine("No arguments were provided");
else

Console.WriteLine("Arguments were provided");
}

}

shows a program that uses an if statement to write out two different messages depending on whether command-
line arguments were provided or not.

1.7.6 The switch statement
A switch statement executes the statements that are associated with the value of a given expression, or a
default of statements if no match exists.

The example

using System;

class Test
{

static void Main(string[] args) {
switch (args.Length) {

case 0:
Console.WriteLine("No arguments were provided");
break;

case 1:
Console.WriteLine("One arguments was provided");
break;

default:
Console.WriteLine("{0} arguments were provided");
break;

}
}

}

switches on the number of arguments provided.

1.7.7 The while statement
A while statement conditionally executes a statement zero or more times – as long as a boolean test is true.

using System;

class Test
{

static int Find(int value, int[] arr) {
int i = 0;
while (arr[i] != value) {

if (++i > arr.Length)
throw new ArgumentException();

}
return i;

}

static void Main() {
Console.WriteLine(Find(3, new int[] {5, 4, 3, 2, 1}));

}
}

uses a while statement to find the first occurrence of a value in an array.

Chapter 1 Introduction

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 13

1.7.8 The do statement
A do statement conditionally executes a statement one or more times.

The example

using System;

class Test
{

static void Main() {
string s;

do {
s = Console.ReadLine();

}
while (s != "Exit");

}
}

reads from the console until the user types “Exit” and presses the enter key.

1.7.9 The for statement
A for statement evaluates a sequence of initialization expressions and then, while a condition is true, repeatedly
executes a statement and evaluates a sequence of iteration expressions.

The example

using System;

class Test
{

static void Main() {
for (int i = 0; i < 10; i++)

Console.WriteLine(i);
}

}

uses a for statement to write out the integer values 1 through 10.

1.7.10 The foreach statement
A foreach statement enumerates the elements of a collection, executing a statement for each element of the
collection.

The example

using System;
using System.Collections;

class Test
{

static void WriteList(ArrayList list) {
foreach (object o in list)

Console.WriteLine(o);
}

static void Main() {
ArrayList list = new ArrayList();

for (int i = 0; i < 10; i++)
list.Add(i);

WriteList(list);
}

}

C# LANGUAGE REFERENCE

14 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

uses a foreach statement to iterate over the elements of a list.

1.7.11 The break statement and the continue statement
A break statement exits the nearest enclosing switch , while , do, for, or foreach statement; a continue
starts a new iteration of the nearest enclosing while , do, for , or foreach statement.

1.7.12 The return statement
A return statement returns control to the caller of the member in which the return statement appears. A
return statement with no expression can be used only in a member that does not return a value (e.g., a method
that returns void). A return statement with an expression can only be used only in a function member that
returns an expression.

1.7.13 The throw statement
The throw statement throws an exception.

1.7.14 The try statement
The try statement provides a mechanism for catching exceptions that occur during execution of a block. The
try statement furthermore provides the ability to specify a block of code that is always executed when control
leaves the try statement.

1.7.15 The checked and unchecked statements
The checked and unchecked statements are used to control the overflow checking context for arithmetic
operations and conversions involving integral types. The checked statement causes all expressions to be
evaluated in a checked context, and the unchecked statement causes all expressions to be evaluated in an
unchecked context.

1.7.16 The lock statement
The lock statement obtains the mutual-exclusion lock for a given object, executes a statement, and then
releases the lock.

1.8 Classes
Class declarations are used to define new reference types. C# supports single inheritance only, but a class may
implement multiple interfaces.

Class members can include constants, fields, methods, properties, indexers, events, operators, constructors,
destructors, and nested type declaration.

Each member of a class has a form of accessibility. There are five forms of accessibility:

• public members are available to all code;

• protected members are accessible only from derived classes;

• internal members are accessible only from within the same assembly;

• protected internal members are accessible only from derived classes within the same assembly;

• private members are accessible only from the class itself.

Chapter 1 Introduction

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 15

1.9 Structs
The list of similarities between classes and structs is long – structs can implement interfaces, and can have the
same kinds of members as classes. Structs differ from classes in several important ways, however: structs are
value types rather than reference types, and inheritance is not supported for structs. Struct values are stored
either “on the stack” or “in-line”. Careful programmers can enhance performance through judicious use of
structs.

For example, the use of a struct rather than a class for a Point can make a large difference in the number of
allocations. The program below creates and initializes an array of 100 points. With Point implemented as a
class, the program instantiates 101 separate objects – one for the array and one each for the 100 elements.

class Point
{

public int x, y;

public Point() {
x = 0;
y = 0;

}

public Point(int x, int y) {
this.x = x;
this.y = y;

}
}

class Test
{

static void Main() {
Point[] points = new Point[100];
for (int i = 0; i < 100; i++)

points[i] = new Point(i, i*i);
}

}

If Point is instead implemented as a struct, as in

struct Point
{

public int x, y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}
}

then the test program instantiates just one object, for the array. The Point instances are allocated in-line within
the array. Of course, this optimization can be mis-used. Using structs instead of classes can also make your
programs fatter and slower, as the overhead of passing a struct instance by value is slower than passing an object
instance by reference. There is no substitute for careful data structure and algorithm design.

1.10 Interfaces
Interfaces are used to define a contract; a class or struct that implements the interface must adhere to this
contract. Interfaces can contain methods, properties, indexers, and events as members.

The example

interface IExample
{

string this[int index] { get; set; }

event EventHandler E;

C# LANGUAGE REFERENCE

16 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

void F(int value);

string P { get; set; }
}

public delegate void EventHandler(object sender, Event e);

shows an interface that contains an indexer, an event E, a method F, and a property P.

Interfaces may employ multiple inheritance. In the example below, the interface IComboBox inherits from both
ITextBox and IListBox.

interface IControl
{

void Paint();
}

interface ITextBox: IControl
{

void SetText(string text);
}

interface IListBox: IControl
{

void SetItems(string[] items);
}

interface IComboBox: ITextBox, IListBox {}

Classes and structs can implement multiple interfaces. In the example below, the class EditBox derives from
the class Control and implements both IControl and IDataBound.

interface IDataBound
{

void Bind(Binder b);
}

public class EditBox: Control, IControl, IDataBound
{

public void Paint();

public void Bind(Binder b) {...}
}

In the example above, the Paint method from the IControl interface and the Bind method from
IDataBound interface are implemented using public members on the EditBox class. C# provides an
alternative way of implementing these methods that allows the implementing class to avoid having these
members be public. Interface members can be implemented by using a qualified name. For example, the
EditBox class could instead be implemented by providing IControl.Paint and IDataBound.Bind
methods.

public class EditBox: IControl, IDataBound
{

void IControl.Paint();

void IDataBound.Bind(Binder b) {...}
}

Interface members implemented in this way are called “explicit interface member implementations” because
each method explicitly designates the interface method being implemented.

Explicit interface methods can only be called via the interface. For example, the EditBox’s implementation of
the Paint method can be called only by casting to the IControl interface.

Chapter 1 Introduction

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 17

class Test
{

static void Main() {
EditBox editbox = new EditBox();
editbox.Paint(); // error: EditBox does not have a Paint method

IControl control = editbox;
control.Paint(); // calls EditBox’s implementation of Paint

}
}

1.11 Delegates
Delegates enable scenarios that C++ and some other languages have addressed with function pointers. Unlike
function pointers, delegates are object-oriented, type-safe, and secure.

Delegates are reference types that derive from a common base class: System.Delegate. A delegate instance
encapsulates a method – a callable entity. For instance methods, a callable entity consists of an instance and a
method on the instance. If you have a delegate instance and an appropriate set of arguments, you can invoke the
delegate with the arguments. Similarly, for static methods, a callable entity consists of a class and a static
method on the class.

An interesting and useful property of a delegate is that it does not know or care about the class of the object that
it references. Any object will do; all that matters is that the method’s signature matches the delegate’s. This
makes delegates perfectly suited for "anonymous" invocation. This is a powerful capability.

There are three steps in defining and using delegates: declaration, instantiation, and invocation. Delegates are
declared using delegate declaration syntax. A delegate that takes no arguments and returns void can be declared
with

delegate void SimpleDelegate();

A delegate instance can be instantiated using the new keyword, and referencing either an instance or class
method that conforms to the signature specified by the delegate. Once a delegate has been instantiated, it can be
called using method call syntax. In the example

class Test
{

static void F() {
System.Console.WriteLine("Test.F");

}

static void Main() {
SimpleDelegate d = new SimpleDelegate(F);
d();

}
}

a SimpleDelegate instance is created and then immediately invoked.

Of course, there is not much point in instantiating a delegate for a method and then immediately calling via the
delegate, as it would be simpler to call the method directly. Delegates show their usefulness when their
anonymity is used. For example, we could define a MultiCall method that can call repeatedly call a
SimpleDelegate.

void MultiCall(SimpleDelegate d, int count) {
for (int i = 0; i < count; i++)

d();
}

}

C# LANGUAGE REFERENCE

18 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

1.12 Enums
An enum type declaration defines a type name for a related group of symbolic constants. Enums are typically
used when for “multiple choice” scenarios, in which a runtime decision is made from a number of options that
are known at compile-time.

The example

enum Color {
Red,
Blue,
Green

}

class Shape
{

public void Fill(Color color) {
switch(color) {

case Color.Red:
...
break;

case Color.Blue:
...
break;

case Color.Green:
...
break;

default:
break;

}
}

}

shows a Color enum and a method that uses this enum. The signature of the Fill method makes it clear that
the shape can be filled with one of the given colors.

The use of enums is superior to the use of integer constants – as is common in languages without enums –
because the use of enums makes the code more readable and self-documenting. The self-documenting nature of
the code also makes it possible for the development tool to assist with code writing and other “designer”
activities. For example, the use of Color rather than int for a parameter type enables smart code editors to
suggest Color values.

1.13 Namespaces
C# programs are organized using namespaces. Namespaces are used both as an “internal” organization system
for a program, and as an “external” organization system – a way of presenting program elements that are
exposed to other programs.

Earlier, we presented a “Hello, world” program. We’ll now rewrite this program in two pieces: a
HelloMessage component that provides messages and a console application that displays messages.

First, we’ll provide a HelloMessage class in a namespace. What should we call this namespace? By
convention, developers put all of their classes in a namespace that represents their company or organization.
We’ll put our class in a namespace named Microsoft.CSharp.Introduction.

Chapter 1 Introduction

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 19

namespace Microsoft.CSharp.Introduction
{

public class HelloMessage
{

public string GetMessage() {
return "Hello, world";

}
}

}

Namespaces are hierarchical, and the name Microsoft.CSharp.Introduction is actually shorthand for
defining a namespace named Microsoft that contains a namespace named CSharp that itself contains a
namespace named Introduction, as in:

namespace Microsoft
{

namespace CSharp
{

namespace Introduction
{....}

}
}

Next, we’ll write a console application that uses the HelloMessage class. We could just use the fully qualified
name for the class – Microsoft.CSharp.Introduction.HelloMessage – but this name is quite long and
unwieldy. An easier way is to use a “using” directive, which makes it possible to use all of the types in a
namespace without qualification.

using Microsoft.CSharp.Introduction;

class Hello
{

static void Main() {
HelloMessage m = new HelloMessage();
System.Console.WriteLine(m.GetMessage());

}
}

Note that the two occurrences of HelloMessage are shorthand for
Microsoft.CSharp.Introduction.HelloMessage.

C# also enables the definition and use of aliases. Such aliases can be useful in situation in which name collisions
occur between two libraries, or when a small number of types from a much larger namespace are being used.
Our example can be rewritten using aliases as:

using MessageSource = Microsoft.CSharp.Introduction.HelloMessage;

class Hello
{

static void Main() {
MessageSource m = new MessageSource();
System.Console.WriteLine(m.GetMessage());

}
}

1.14 Properties
A property is a named attribute associated with an object or a class. Examples of properties include the length of
a string, the size of a font, the caption of a window, the name of a customer, and so on. Properties are a natural
extension of fields – both are named members with associated types, and the syntax for accessing fields and
properties is the same. However, unlike fields, properties do not denote storage locations. Instead, properties
have accessors that specify the statements to execute in order to read or write their values. Properties thus

C# LANGUAGE REFERENCE

20 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

provide a mechanism for associating actions with the reading and writing of an object’s attributes, and they
furthermore permit such attributes to be computed.

The success of rapid application development tools like Visual Basic can, to some extent, be attributed to the
inclusion of properties as a first-class element. VB developers can think of a property as being field-like, and
this allows them to focus on their own application logic rather than on the details of a component they happen to
be using. On the face of it, this difference might not seem like a big deal, but modern component-oriented
programs tend to be chockfull of property reads and writes. Languages with method-like usage of properties
(e.g., o.SetValue(o.GetValue() + 1);) are clearly at a disadvantage compared to languages that feature
field-like usage of properties (e.g., o.Value++;).

Properties are defined in C# using property declaration syntax. The first part of the syntax looks quite similar to
a field declaration. The second part includes a get accessor and/or a set accessor. In the example below, the
Button class defines a Caption property.

public class Button: Control
{

private string caption;

public string Caption {
get {

return caption;
}

set {
caption = value;
Repaint();

}
}

}

Properties that can be both read and written, like the Caption property, include both get and set accessors. The
get accessor is called when the property’s value is read; the set accessor is called when the property’s value is
written. In a set accessor; the new value for the property is given in an implicit value parameter.

Declaration of properties is relatively straightforward, but the true value of properties shows itself is in their
usage rather than in their declaration. The Caption property can read and written in the same way that fields
can be read and written:

Button b = new Button();

b.Caption = "ABC"; // set

string s = b.Caption; // get

b.Caption += "DEF”; // get & set

1.15 Indexers
If properties in C# can be likened to “smart fields”, then indexers can be likened to “smart arrays”. Whereas
properties enable field-like access, indexers enable array-like access.

As an example, consider a ListBox control, which displays strings. This class wants to expose an array-like
data structure that exposes the list of strings it contains, but also wants to be able to automatically update its
contents when a value is altered. These goals can be accomplished by providing an indexer. The syntax for an
indexer declaration is similar to that of a property declaration, with the main differences being that indexers are
nameless (the “name” used in the declaration is this, since this is being indexed) and that additional indexing
parameters are provided between square brackets.

public class ListBox: Control
{

private string[] items;

Chapter 1 Introduction

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 21

public string this[int index] {
get {

return items[index];
}

set {
items[index] = value;
Repaint();

}
}

}

As with properties, the convenience of indexers is best shown by looking at use rather than declaration. The
ListBox class can be used as follows:

ListBox listBox = ...;
listBox[0] = "hello";
Console.WriteLine(listBox[0]);

1.16 Events
Events permit a class to declare notifications for which clients can attach executable code in the form of event
handlers. Events are an important aspect of the design of class libraries in general, and of the system-provided
class library in particular. C# provides an integrated solution for events.

A class defines an event by providing an event declaration, which looks quite similar to a field or event
declaration but with an added event keyword. The type of this declaration must be a delegate type. In the
example below, the Button class defines a Click event of type EventHandler.

public delegate void EventHandler(object sender, Event e);

public class Button: Control
{

public event EventHandler Click;

public void Reset() {
Click = null;

}
}

Inside the Button class, the Click member can be corresponds exactly to a private field of type
EventHandler. However, outside the Button class, the Click member can only be used on the left hand side
of the += and -= operators. This restricts client code to adding or removing an event handler. In the client code
example below, the Form1 class adds Button1_Click as an event handler for Button1’s Click event. In the
Disconnect method, the event handler is removed.

using System;

public class Form1: Form
{

public Form1() {
// Add Button1_Click as an event handler for Button1’s Click event
Button1.Click += new EventHandler(Button1_Click);

}

Button Button1 = new Button();

void Button1_Click(object sender, Event e) {
Console.WriteLine("Button1 was clicked!");

}

public void Disconnect() {
Button1.Click -= new EventHandler(Button1_Click);

}
}

C# LANGUAGE REFERENCE

22 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The Button class could be rewritten to use a property-like event declaration rather than a field-like event
declaration. This change has no effect on client code.

public class Button: Control
{

public event EventHandler Click {
get {...}
set {...}

}

public void Reset() {
Click = null;

}
}

1.17 Versioning
Versioning is an after-thought in most languages, but not in C#.

“Versioning” actually has two different meanings. A new version of a component is “source compatible” with a
previous version if code that depends on the previous version can, when recompiled, work with the new version.
In contrast, for a “binary compatible” component, a program that depended on the old version can, without
recompilation, work with the new version.

Most languages do not support binary compatibility at all, and many do little to facilitate source compatibility.
In fact, some languages contain flaws that make it impossible, in general, to evolve a class over time without
breaking some client code.

As an example, consider the situation of a base class author who ships a class named Base. In this first version,
Base contains no F method. A component named Derived derives from Base, and introduces an F. This
Derived class, along with the class Base that it depends on, is released to customers, who deploy to numerous
clients and servers.

// Author A
namespace A
{

class Base // version 1
{
}

}

// Author B
namespace B
{

class Derived: A.Base
{

public virtual void F() {
System.Console.WriteLine("Derived.F");

}
}

}

So far, so good. But now the versioning trouble begins. The author of Base produces a new version, and adds its
own F method.

Chapter 1 Introduction

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 23

// Author A
namespace A
{

class Base // version 2
{

public virtual void F() { // added in version 2
System.Console.WriteLine("Base.F");

}
}

}

This new version of Base should be both source and binary compatible with the initial version. (If it weren’t
possible to simply add a method then a base class could never evolve.) Unfortunately, the new F in Base makes
the meaning of Derived’s F is unclear. Did Derived mean to override Base’s F? This seems unlikely, since
when Derived was compiled, Base did not even have an F! Further, if Derived’s F does override Base’s F,
then does Derived’s F adhere to the contract specified by Base? This seems even more unlikely, since it is
pretty darn difficult for Derived’s F to adhere to a contract that didn’t exist when it was written. For example,
the contract of Base’s F might require that overrides of it always call the base. Derived’s F could not possibly
adhere to such a contract since it cannot call a method that does not yet exist.

In practice, will name collisions of this kind actually occur? Let’s consider the factors involved. First, it is
important to note that the authors are working completely independently – possibly in separate corporations – so
no collaboration is possible. Second, there may be many derived classes. If there are more derived classes, then
name collisions are more likely to occur. Imagine that the base class is Form, and that all VB, VC++ and C#
developers are creating derived classes – that’s a lot of derived classes. Finally, name collisions are more likely
if the base class is in a specific domain, as authors of both a base class and its derived classes are likely to
choose names from this domain.

C# addresses this versioning problem by requiring developers to clearly state their intent. In the original code
example, the code was clear, since Base did not even have an F. Clearly, Derived’s F is intended as a new
method rather than an override of a base method, since no base method named F exists.

// Author A
namespace A
{

class Base
{
}

}

// Author B
namespace B
{

class Derived: A.Base
{

public virtual void F() {
System.Console.WriteLine("Derived.F");

}
}

}

If Base adds an F and ships a new version, then the intent of a binary version of Derived is still clear –
Derived’s F is semantically unrelated, and should not be treated as an override.

However, when Derived is recompiled, the meaning is unclear – the author of Derived may intend its F to
override Base’s F, or to hide it. Since the intent is unclear, the C# compiler produces a warning, and by default
makes Derived’s F hide Base’s F – duplicating the semantics for the case in which Derived is not
recompiled. This warning alerts Derived’s author to the presence of the F method in Base. If Derived’s F is
semantically unrelated to Base’s F, then Derived’s author can express this intent – and, in effect, turn off the
warning – by using the new keyword in the declaration of F.

C# LANGUAGE REFERENCE

24 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

// Author A
namespace A
{

class Base // version 2
{

public virtual void F() { // added in version 2
System.Console.WriteLine("Base.F");

}
}

}

// Author B
namespace B
{

class Derived: A.Base // version 2a: new
{

new public virtual void F() {
System.Console.WriteLine("Derived.F");

}
}

}

On the other hand, Derived’s author might investigate further, and decide that Derived’s F should override
Base’s F, and clearly specify this intent through specification of the override keyword, as shown below.

// Author A
namespace A
{

class Base // version 2
{

public virtual void F() { // added in version 2
System.Console.WriteLine("Base.F");

}
}

}

// Author B
namespace B
{

class Derived: A.Base // version 2b: override
{

public override void F() {
base.F();
System.Console.WriteLine("Derived.F");

}
}

}

The author of Derived has one other option, and that is to change the name of F, thus completely avoiding the
name collision. Though this change would break source and binary compatibility for Derived, the importance
of this compatibility varies depending on the scenario. If Derived is not exposed to other programs, then
changing the name of F is likely a good idea, as it would improve the readability of the program – there would
no longer be any confusion about the meaning of F.

1.18 Attributes
C# is a procedural language, but like all procedural languages it does have some declarative elements. For
example, the accessibility of a method in a class is specified by decorating it public , protected, internal ,
protected internal, or private. Through its support for attributes, C# generalizes this capability, so that
programmers can invent new kinds of declarative information, specify this declarative information for various
program entities, and retrieve this declarative information at run-time. Programs specify this additional
declarative information by defining and using attributes.

Chapter 1 Introduction

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 25

For instance, a framework might define a HelpAttribute attribute that can be placed on program elements
such as classes and methods to provide a mapping from program elements to documentation for them. The
example

[AttributeUsage(AttributeTargets.All)]
public class HelpAttribute: System.Attribute
{

public HelpAttribute(string url) {
this.url = url;

}

public string Topic = null;

private string url;

public string Url {
get { return url; }

}
}

defines an attribute class named HelpAttribute, or Help for short, that has one positional parameter (string
url) and one named argument (string Topic). Positional parameters are defined by the formal parameters for
public constructors of the attribute class; named parameters are defined by public read-write properties of the
attribute class. The square brackets in the example indicate the use of an attribute in defining the Help attribute.
In this case, the AttributeUsage attribute indicates that any program element can be decorated with the Help
attribute.

The example

[Help("http://www.mycompany.com/…/Class1.htm")]
public class Class1
{

[Help("http://www.mycompany.com/…/Class1.htm", Topic ="F")]
public void F() {}

}

shows several uses of the attribute.

Attribute information for a given program element can be retrieved at run-time by using the .NET runtime’s
reflection support. The example

using System;

class Test
{

static void Main() {
Type type = typeof(Class1);
object[] arr = type.GetCustomAttributes(typeof(HelpAttribute));
if (arr.Length == 0)

Console.WriteLine("Class1 has no Help attribute.");
else {

HelpAttribute ha = (HelpAttribute) arr[0];
Console.WriteLine("Url = {0}, Topic = {1}", ha.Url, ha.Topic);

}
}

}

checks to see if Class1 has a Help attribute, and writes out the associated Topic and Url values if the
attribute is present.

Chapter 2 Lexical structure

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 27

2. Lexical structure

2.1 Phases of translation
A C# program consists of one or more source files. A source file is an ordered sequence of Unicode characters.
Source files typically have a one-to-one correspondence with files in a file system, but this correspondence is
not required by C#.

Conceptually speaking, a program is compiled using four steps:

1. Pre-processing, a text-to-text translation that enables conditional inclusion and exclusion of program text.

2. Lexical analysis, which translates a stream of input characters into a stream of tokens.

3. Syntactic analysis, which translates the stream of tokens into executable code.

2.2 Grammar notation
Lexical and syntactic grammars for C# are interspersed throughout this specification. The lexical grammar
defines how characters can be combined to form tokens; the syntactic grammar defines how tokens can be
combined to form C# programs.

Grammar productions include non-terminal symbols and terminal symbols. In grammar productions, non-
terminal symbols are shown in italic type, and terminal symbols are shown in a fixed-width font. Each non-
terminal is defined by a set of productions. The first line of a set of productions is the name of the non-terminal,
followed by a colon. Each successive indented line contains the right-hand side for a production that has the
non-terminal symbol as the left-hand side. The example:

nonsense:
terminal1
terminal2

defines the nonsense non-terminal as having two productions, one with terminal1 on the right-hand side and
one with terminal2 on the right-hand side.

Alternatives are normally listed on separate lines, though in cases where there are many alternatives, the phrase
“one of” precedes a list of the options. This is simply shorthand for listing each of the alternatives on a separate
line. The example:

letter: one of
A B C a b c

is shorthand for:

letter: one of
A
B
C
a
b
c

A subscripted suffix “opt”, as in identifieropt, is used as shorthand to indicate an optional symbol. The example:

C# LANGUAGE REFERENCE

28 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

whole:
first-part second-partopt last-part

is shorthand for:

whole:
first-part last-part
first-part second-part last-part

2.3 Pre-processing
C# enables conditional inclusion and exclusion of code through pre-processing.

pp-unit:
pp-groupopt

pp-group:
pp-group-part
pp-group pp-group-part

pp-group-part:
pp-tokensopt new-line
pp-declaration
pp-if-section
pp-control-line
pp-line-number

pp-tokens:
pp-token
pp-tokens pp-token

pp-token:
identifier
keyword
literal
operator-or-punctuator

new-line:
The carriage return character (U+000D)
The line feed character (U+000A)
The carriage return character followed by a line feed character
The line separator character (U+2028)
The paragraph separator character (U+2029)

2.3.1 Pre-processing declarations
Names can be defined and undefined for use in pre-processing. A #define defines an identifier. A #undef
"undefines" an identifier – if the identifier was defined earlier then it becomes undefined. If an identifier is
defined then it is semantically equivalent to true; if an identifier is undefined then it is semantically equivalent
to false.

pp-declaration:
#define pp-identifier
#undef pp-identifier

The example:

Chapter 2 Lexical structure

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 29

#define A
#undef B

class C
{

#if A
void F() {}

#else
void G() {}

#endif

#if B
void H() {}

#else
void I() {}

#endif
}

becomes:

class C
{

void F() {}
void I() {}

}

Within a pp-unit, declarations must precede pp-token elements. In other words, #define and #undef must
precede any "real code" in the file, or a compile-time error occurs. Thus, it is possible to intersperse #if and
#define as in the example below:

#define A
#if A

#define B
#endif
namespace N
{

#if B
class Class1 {}
#endif

}

The following example is illegal because a #define follows real code:

#define A
namespace N
{

#define B
#if B
class Class1 {}
#endif

}

A #undef may "undefine" a name that is not defined. The example below defines a name and then undefines it
twice; the second #undef has no effect but is still legal.

#define A
#undef A
#undef A

2.3.2 #if, #elif, #else, #endif
A pp-if-section is used to conditionally include or exclude portions of program text.

pp-if-section:
pp-if-group pp-elif-groupsopt pp-else-groupopt pp-endif-line

C# LANGUAGE REFERENCE

30 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

pp-if-group:
#if pp-expression new-line pp-groupopt

pp-elif-groups
pp-elif-group
pp-elif-groups pp-elif-group

pp-elif-group:
#elif pp-expression new-line groupopt

pp-else-group:
#else new-line groupopt

pp-endif-line
#endif new-line

The example:

#define Debug

class Class1
{
#if Debug

void Trace(string s) {}
#endif
}

becomes:

class Class1
{

void Trace(string s) {}
}

If sections can nest. Example:

#define Debug // Debugging on
#undef Trace // Tracing off

class PurchaseTransaction
{

void Commit {
#if Debug

CheckConsistency();
#if Trace

WriteToLog(this.ToString());
#endif

#endif
CommitHelper();

}
}

2.3.3 Pre-processing control lines
The #error and #warning features enable code to report warning and error conditions to the compiler for
integration with standard compile-time warnings and errors.

pp-control-line:
#error pp-message
#warning pp-message

pp-message:
pp-tokensopt

The example

Chapter 2 Lexical structure

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 31

#warning Code review needed before check-in

#define DEBUG

#if DEBUG && RETAIL
#error A build can't be both debug and retail!

#endif

class Class1
{…}

always produces a warning ("Code review needed before check-in"), and produces an error if the pre-
processing identifiers DEBUG and RETAIL are both defined.

2.3.4 #line
The #line feature enables a developer to alter the line number and source file names that are used by the
compiler in output such as warnings and errors. If no line directives are present then the line number and file
name are determined automatically by the compiler. The #line directive is most commonly used in meta-
programming tools that generate C# source code from some other text input.

pp-line-number:
#line integer-literal
#line integer-literal string-literal

pp-integer-literal:
decimal-digit
decimal-digits decimal-digit

pp-string-literal:
" pp-string-literal-characters "

pp-string-literal-characters:
pp-string-literal-character
pp-string-literal-characters pp-string-literal-character

pp-string-literal-character:
Any character except " (U+0022), and white-space

2.3.5 Pre-processing identifiers
Pre-processing identifiers employ a grammar similar to the grammar used for regular C# identifiers:

pp-identifier:
pp-available-identifier

pp-available-identifier:
A pp-identifier-or-keyword that is not true or false

pp-identifier-or-keyword:
identifier-start-character identifier-part-charactersopt

The symbols true and false are not legal pre-processing identifiers, and so cannot be defined with #define
or undefined with #undef.

2.3.6 Pre-processing expressions
The operators !, ==, !=, && and || are permitted in pre-processing expressions. Parentheses can be used for
grouping in pre-processing expressions.

pp-expression:
pp-equality-expression

C# LANGUAGE REFERENCE

32 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

pp-primary-expression:
true
false
pp-identifier
(pp-expression)

pp-unary-expression:
pp-primary-expression
! pp-unary-expression

pp-equality-expression:
pp-equality-expression == pp-logical-and-expression
pp-equality-expression != pp-logical-and-expression

pp-logical-and-expression:
pp-unary-expression
pp-logical-and-expression && pp-unary-expression

pp-logical-or-expression:
pp-logical-and-expression
pp-logical-or-expression || pp-logical-and-expression

2.3.7 Interaction with white space
Conditional compilation directives must be the first non-white space for a line.

A single-line comment may follow on the same line as conditional-compilation directives other than pp-control-
line directives. For example,

#define Debug // Defined if the build is a debug build

For pp-control-line directives, the remainder of the line constitutes the pp-message, independent of the contents
of the line. The example

#warning // TODO: Add a better warning

results in a warning with the contents "// TODO: Add a better warning".

A multi-line comment may not begin or end on the same line as a conditional compilation directive. The
example

/* This comment is illegal because it
ends on the same line*/ #define Debug

/* This is comment is illegal because it is on the same line */ #define
Retail

#define A /* This is comment is illegal because it is on the same line */

#define B /* This comment is illegal because it starts
on the same line */

results in a compile-time error.

Text that otherwise might form a conditional compilation directive can be hidden in a comment. The example

// This entire line is a commment. #define Debug

/* This text would be a cc directive but it is commented out:
#define Retail

*/

contains no conditional compilation directives, and consists entirely of white space.

Chapter 2 Lexical structure

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 33

2.4 Lexical analysis

2.4.1 Input
input:

input-elementsopt

input-elements:
input-element
input-elements input-element

input-element:
comment
white-space
token

2.4.2 Input characters

input-character:
any Unicode character

2.4.3 Line terminators
line-terminator:

TBD

2.4.4 Comments

comment:
TBD

Example:

// This is a comment
int i;

/* This is a
multiline comment */

int j;

2.4.5 White space
white-space:

new-line
The tab character (U+0009)
The vertical tab character (U+000B)
The form feed character (U+000C)
The "control-Z" or "substitute" character (U+001A)
All characters with Unicode class "Zs"

2.4.6 Tokens
There are five kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space, in its
various forms (described below), is ignored, though it may act as a separator for tokens.

C# LANGUAGE REFERENCE

34 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

token:
identifier
keyword
literal
operator-or-punctuator

2.5 Processing of Unicode character escape sequences
A Unicode character escape sequence represents a Unicode character. Unicode character escape sequences are
permitted in identifiers, string literals, and character literals.

unicode-character-escape-sequence:
\u hex-digit hex-digit hex-digit hex-digit

Multiple translations are not performed. For instance, the string literal “\u005Cu005C” is equivalent to
“\u005C” rather than “\\”. (The Unicode value \u005C is the character “\”.)

The example

class Class1
{

static void Test(bool \u0066) {
char c = '\u0066';
if (\u0066)

Console.WriteLine(c.ToString());
}

}

shows several uses of \u0066, which is the character escape sequence for the letter “f”. The program is
equivalent to

class Class1
{

static void Test(bool f) {
char c = 'f';
if (f)

Console.WriteLine(c.ToString());
}

}

2.5.1 Identifiers
These identifier rules exactly correspond to those recommended by the Unicode 2.1 standard except that
underscore and similar characters are allowed as initial characters, formatting characters (class Cf) are not
allowed in identifiers, and Unicode escape characters are permitted in identifiers.

identifier:
available-identifier
@ identifier-or-keyword

available-identifier:
An identifier-or-keyword that is not a keyword

identifier-or-keyword:
identifier-start-character identifier-part-charactersopt

identifier-start-character:
letter-character
underscore-character

Chapter 2 Lexical structure

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 35

identifier-part-characters:
identifier-part-character
identifier-part-characters identifier-part-character

identifier-part-character:
letter-character
combining-character
decimal-digit-character
underscore-character

letter-character:
A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nl
A unicode-character-escape-sequence representing a character of classes Lu, Ll, Lt, Lm, Lo, or Nl

combining-character:
A Unicode character of classes Mn or Mc
A unicode-character-escape-sequence representing a character of classes Mn or Mcdecimal-digit-
character:
A Unicode character of the class Nd
A unicode-character-escape-sequence representing a character of the class Nd

underscore-character:
A Unicode character of the class Pc
A unicode-character-escape-sequence representing a character of the class Pc

Examples of legal identifiers include “identifier1”, “_identifier2”, and “@if”.

The prefix “@” enables the use of keywords as identifiers. The character @ is not actually part of the identifier,
and so might be seen in other languages as a normal identifier, without the prefix. Use of the @ prefix for
identifiers that are not keywords is permitted, but strongly discouraged as a matter of style.

The example:

class @class
{

static void @static(bool @bool) {
if (@bool)

Console.WriteLine("true");
else

Console.WriteLine("false");
}

}

class Class1
{

static void M {
@class.@static(true);

}
}

defines a class named “class” with a static method named “static” that takes a parameter named “bool”.

C# LANGUAGE REFERENCE

36 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

2.5.2 Keywords

keyword: one of
abstract base bool break byte
case catch char checked class
const continue decimal default delegate
do double else enum event
explicit extern false finally fixed
float for foreach goto if
implicit in int interface internal
is lock long namespace new
null object operator out override
params private protected public readonly
ref return sbyte sealed short
sizeof static string struct switch
this throw true try typeof
uint ulong unchecked unsafe ushort
using virtual void while

2.5.3 Literals
literal:

boolean-literal
integer-literal
real-literal
character-literal
string-literal
null-literal

2.5.3.1 Boolean literals
There are two boolean literal values: true and false.

boolean-literal:
true
false

2.5.3.2 Integer literals
Integer literals have two possible forms: decimal and hexadecimal.

integer-literal:
decimal-integer-literal
hexadecimal-integer-literal

decimal-integer-literal:
decimal-digits integer-type-suffixopt

decimal-digits:
decimal-digit
decimal-digits decimal-digit

decimal-digit: one of
0 1 2 3 4 5 6 7 8 9

integer-type-suffix: one of
U u L l UL Ul uL ul LU Lu lU lu

Chapter 2 Lexical structure

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 37

hexadecimal-integer-literal:
0x hex-digits integer-type-suffixopt

hex-digits:
hex-digit
hex-digits hex-digit

hex-digit: one of
0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

The type of an integer literal is determined as follows:

• If the literal has no suffix, it has the first of these types in which its value can be represented: int, uint,
long, ulong.

• If the literal is suffixed by U or u, it has the first of these types in which its value can be represented: uint,
ulong.

• If the literal is suffixed by L or l, it has the first of these types in which its value can be represented: long,
ulong.

• If the literal is suffixed by UL, Ul , uL, ul, LU , Lu, lU , or lu, it is of type ulong.

If the value represented by an integer literal is outside the range of the ulong type, an error occurs.

To permit the smallest possible int and long values to be written as decimal integer literals, the following two
rules exist:

• When a decimal-integer-literal with the value 2147483648 (231) and no integer-type-suffix appears as the
operand of the unary - operator (§7.6.2), the result is a constant of type int with the value -2147483648
(- 231). In all other situations, such a decimal-integer-literal is of type uint.

• When a decimal-integer-literal with the value 9223372036854775808 (263) and no integer-type-suffix or the
integer-type-suffix L or l appears as the operand of the unary - operator (§7.6.2), the result is a constant of
type long with the value -9223372036854775808 (-263). In all other situations, such a decimal-integer-
literal is of type ulong.

2.5.3.3 Real literals
real-literal:

decimal-digits . decimal-digits exponent-partopt real-type-suffixopt

. decimal-digits exponent-partopt real-type-suffixopt

decimal-digits exponent-part real-type-suffixopt

decimal-digits real-type-suffix

exponent-part:
e signopt decimal-digits
E signopt decimal-digits

sign: one of
+ -

real-type-suffix: one of
F f D d M m

If no real type suffix is specified, the type of the real literal is double. Otherwise, the real type suffix
determines the type of the real literal, as follows:

• A real literal suffixed by F or f is of type float. For example, the literals 1f, 1.5f , 1e10f, and
-123.456F are all of type float.

C# LANGUAGE REFERENCE

38 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• A real literal suffixed by D or d is of type double. For example, the literals 1d, 1.5d , 1e10d, and
-123.456D are all of type double.

• A real literal suffixed by M or m is of type decimal. For example, the literals 1m, 1.5m , 1e10m, and
-123.456M are all of type decimal.

If the specified literal cannot be represented in the indicated type, then a compile-time error occurs.

2.5.3.4 Character literals
A character literal is a single character enclosed in single quotes, as in 'a'.

character-literal:
' character '

character:
single-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-character-escape-sequence

single-character:
 Any character except ' (U+0027), \ (U+005C), and white-space other than space (U+0020)

simple-escape-sequence: one of
\' \" \\ \0 \a \b \f \n \r \t \v

hexadecimal-escape-sequence:
\x hex-digit hex-digitopt hex-digitopt hex-digitopt

A character that follows a backslash character (\) in a simple-escape-sequence or hexadecimal-escape-sequence
must be one of the following characters: ', ", \, 0 , a, b , f, n, r , t, x, v. Otherwise, a compile-time error occurs.

A simple escape sequence represents a Unicode character encoding, as described in the table below.

Chapter 2 Lexical structure

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 39

Escape
sequence

Character
name

Unicode
encoding

\' Single quote 0x0027

\" Double quote 0x0022

\\ Backslash 0x005C

\0 Null 0x0000

\a Alert 0x0007

\b Backspace 0x0008

\f Form feed 0x000C

\n New line 0x000A

\r Carriage return 0x000D

\t Horizontal tab 0x0009

\v Vertical tab 0x000B

2.5.3.5 String literals
C# supports two forms of string literals: regular string literals and verbatim string literals. A regular string literal
consists of zero or more characters enclosed in double quotes, as in "Hello, world", and may include both
simple escape sequences (such as \t for the tab character) and hexadecimal escape sequences.

A verbatim string literal consists of an @ character followed by a double-quote character, zero or more
characters, and a closing double-quote character. A simple examples is @"Hello, world". In a verbatim
string literal, the characters between the delimiters are interpreted verbatim, with the only exception being a
quote escape sequence. In particular, simple escape sequences and hexadecimal escape sequences are not
processed in verbatim string literals. A verbatim string literal may span multiple lines.

string-literal:
regular-string-literal
verbatim-string-literal

regular-string-literal:
" regular-string-literal-charactersopt "

regular-string-literal-characters:
regular-string-literal-character
regular-string-literal-characters regular-string-literal-character

regular-string-literal-character:
single-regular-string-literal-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-character-escape-sequence

single-regular-string-literal-character:
Any character except " (U+0022), \ (U+005C), and white-space other than space (U+0020)

verbatim-string-literal:
@" verbatim -string-literal-charactersopt "

C# LANGUAGE REFERENCE

40 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

verbatim-string-literal-characters:
verbatim-string-literal-character
verbatim-string-literal-characters verbatim-string-literal-character

verbatim-string-literal-character:
single-verbatim-string-literal-character
quote-escape-sequence

single-verbatim-string-literal-character:
any character except "

quote-escape-sequence:
""

The example

string a = "hello, world"; // hello, world
string b = @"hello, world"; // hello, world

string c = "hello \t world"; // hello world
string d = @"hello \t world"; // hello \t world

string e = "Joe said \"Hello\" to me"; // Joe said "Hello"
string f = @"Joe said ""Hello"" to me"; // Joe said "Hello"

string g = "\\\\sever\\share\\file.txt"; // \\server\share\file.txt
string h = @"\\server\share\file.txt"; // \\server\share\file.txt

string i = "one\ntwo\nthree";
string j = @"one
two
three";

shows a variety of string literals. The last string literal, j, is a verbatim string literal that spans multiple lines.
The characters between the quotation marks, including white space such as newline characters, are duplicated
verbatim.

2.5.3.6 The null literal
null-literal:

null

2.5.4 Operators and punctuators

operator-or-punctuator: one of
{ } [] () . , : ;
+ - * / % & | ^ ! ~
= < > ? ++ -- && || << >>
== != <= >= += -= *= /= %= &=
|= ^= <<= >>= ->

Chapter 3 Basic concepts

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 41

3. Basic concepts

3.1 Declarations
Declarations in a C# program define the constituent elements of the program. C# programs are organized using
namespaces (§9), which can contain type declarations and nested namespace declarations. Type declarations
(§9.5) are used to define classes (§10), structs (§11), interfaces (§13), enums (§14), and delegates (§15). The
kinds of members permitted in a type declaration depends on the form of the type declaration. For instance, class
declarations can contain declarations for instance constructors (§10.10), destructors (§10.11), static constructors
(§10.12), constants (§10.3), fields (§10.4), methods (§10.5), properties (§10.6), events (§10.7), indexers (§10.8),
operators (§10.9), and nested types.

A declaration defines a name in the declaration space to which the declaration belongs. Except for overloaded
constructor, method, indexer, and operator names, it is an error to have two or more declarations that introduce
members with the same name in a declaration space. It is never possible for a declaration space to contain
different kinds of members with the same name. For example, a declaration space can never contain a field and
a method by the same name.

There are several different types of declaration spaces, as described in the following.

• Within all source files of a program, namespace-member-declarations with no enclosing namespace-
declaration are members of a single combined declaration space called the global declaration space.

• Within all source files of a program, namespace-member-declarations within namespace-declarations that
have the same fully qualified namespace name are members of a single combined declaration space.

• Each class, struct, or interface declaration creates a new declaration space. Names are introduced into this
declaration space through class-member-declarations, struct-member-declarations, or interface-member-
declarations. Except for overloaded constructor declarations and static constructor declarations, a class or
struct member declaration cannot introduce a member by the same name as the class or struct. A class,
struct, or interface permits the declaration of overloaded methods and indexers. A class or struct furthermore
permits the declaration of overloaded constructors and operators. For instance, a class, struct, or interface
may contain multiple method declarations with the same name, provided these method declarations differ in
their signature (§3.4). Note that base classes do not contribute to the declaration space of a class, and base
interfaces do not contribute to the declaration space of an interface. Thus, a derived class or interface is
allowed to declare a member with the same name as an inherited member. Such a member is said to hide the
inherited member.

• Each enumeration declaration creates a new declaration space. Names are introduced into this declaration
space through enum-member-declarations.

• Each block or switch-block creates a separate declaration space for local variables. Names are introduced
into this declaration space through local-variable-declarations. If a block is the body of a constructor or
method declaration, the parameters declared in the formal-parameter-list are members of the block’s local
variable declaration space. The local variable declaration space of a block includes any nested blocks.
Thus, within a nested block it is not possible to declare a local variable with the same name as a local
variable in an enclosing block.

• Each block or switch-block creates a separate declaration space for labels. Names are introduced into this
declaration space through labeled-statements, and the names are referenced through goto-statements. The
label declaration space of a block includes any nested blocks. Thus, within a nested block it is not possible
to declare a label with the same name as a label in an enclosing block.

C# LANGUAGE REFERENCE

42 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The textual order in which names are declared is generally of no significance. In particular, textual order is not
significant for the declaration and use of namespaces, types, constants, methods, properties, events, indexers,
operators, constructors, destructors, and static constructors. Declaration order is significant in the following
ways:

• Declaration order for field declarations and local variable declarations determines the order in which their
initializers (if any) are executed.

• Local variables must be defined before they are used (§3.5).

• Declaration order for enum member declarations (§14.2) is significant when constant-expression values are
omitted.

The declaration space of a namespace is “open ended”, and two namespace declarations with the same fully
qualified name contribute to the same declaration space. For example

namespace Megacorp.Data
{

class Customer
{

...
}

}

namespace Megacorp.Data
{

class Order
{

...
}

}

The two namespace declarations above contribute to the same declaration space, in this case declaring two
classes with the fully qualified names Megacorp.Data.Customer and Megacorp.Data.Order. Because the
two declarations contribute to the same declaration space, it would have been an error if each contained a
declaration of a class with the same name.

The declaration space of a block includes any nested blocks. Thus, in the following example, the F and G
methods are in error because the name i is declared in the outer block and cannot be redeclared in the inner
block. However, the H and I method is valid since the two i’s are declared in separate non-nested blocks.

class A
{

void F() {
int i = 0;
if (true) {

int i = 1;
}

}

void G() {
if (true) {

int i = 0;
}
int i = 1;

}

Chapter 3 Basic concepts

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 43

void H() {
if (true) {

int i = 0;
}
if (true) {

int i = 1;
}

}

void I() {
for (int i = 0; i < 10; i++)

H();
for (int i = 0; i < 10; i++)

H();
}

}

3.2 Members
Namespaces and types have members. The members of an entity are generally available through the use of a
qualified name that starts with a reference to the entity, followed by a “.” token, followed by the name of the
member.

Members of a type are either declared in the type or inherited from the base class of the type. When a type
inherits from a base class, all members of the base class, except constructors and destructors, become members
of the derived type. The declared accessibility of a base class member does not control whether the member is
inherited—inheritance extends to any member that isn’t a constructor or destructor. However, an inherited
member may not be accessible in a derived type, either because of its declared accessibility (§3.3) or because it
is hidden by a declaration in the type itself (§3.5.1.2).

3.2.1 Namespace members
Namespaces and types that have no enclosing namespace are members of the global namespace. This
corresponds directly to the names declared in the global declaration space.

Namespaces and types declared within a namespace are members of that namespace. This corresponds directly
to the names declared in the declaration space of the namespace.

Namespaces have no access restrictions. It is not possible to declare private, protected, or internal namespaces,
and namespace names are always publicly accessible.

3.2.2 Struct members
The members of a struct are the members declared in the struct and the members inherited from class object.

The members of a simple type correspond directly to the members of the struct type aliased by the simple type:

• The members of sbyte are the members of the System.SByte struct.

• The members of byte are the members of the System.Byte struct.

• The members of short are the members of the System.Int16 struct.

• The members of ushort are the members of the System.UInt16 struct.

• The members of int are the members of the System.Int32 struct.

• The members of uint are the members of the System.UInt32 struct.

• The members of long are the members of the System.Int64 struct.

• The members of ulong are the members of the System.UInt64 struct.

C# LANGUAGE REFERENCE

44 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• The members of char are the members of the System.Char struct.

• The members of float are the members of the System.Single struct.

• The members of double are the members of the System.Double struct.

• The members of decimal are the members of the System.Decimal struct.

• The members of bool are the members of the System.Boolean struct.

3.2.3 Enumeration members
The members of an enumeration are the constants declared in the enumeration and the members inherited from
class object.

3.2.4 Class members
The members of a class are the members declared in the class and the members inherited from the base class
(except for class object which has no base class). The members inherited from the base class include the
constants, fields, methods, properties, events, indexers, operators, and types of the base class, but not the
constructors, destructors, and static constructors of the base class. Base class members are inherited without
regard to their accessibility.

A class declaration may contain declarations of constants, fields, methods, properties, events, indexers,
operators, constructors, destructors, static constructors, and types.

The members of object and string correspond directly to the members of the class types they alias:

• The members of object are the members of the System.Object class.

• The members of string are the members of the System.String class.

3.2.5 Interface members
The members of an interface are the members declared in the interface and in all base interfaces of the interface,
and the members inherited from class object.

3.2.6 Array members
The members of an array are the members inherited from class System.Array.

3.2.7 Delegate members
The members of a delegate are the members inherited from class System.Delegate.

3.3 Member access
Declarations of members allow control over member access. The accessibility of a member is established by the
declared accessibility (§3.3.1) of the member combined with the accessibility of the immediately containing
type, if any.

When access to a particular member is allowed, the member is said to be accessible. Conversely, when access to
a particular member is disallowed, the member is said to be inaccessible. Access to a member is permitted when
the textual location in which the access takes place is included in the accessibility domain (§3.3.2) of the
member.

3.3.1 Declared accessibility
The declared accessibility of a member can be one of the following:

Chapter 3 Basic concepts

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 45

• Public, which is selected by including a public modifier in the member declaration. The intuitive meaning
of public is “access not limited”.

• Protected internal (meaning protected or internal), which is selected by including both a protected and an
internal modifier in the member declaration. The intuitive meaning of protected internal is “access
limited to this project or types derived from the containing class”.

• Protected, which is selected by including a protected modifier in the member declaration. The intuitive
meaning of protected is “access limited to the containing class or types derived from the containing
class”.

• Internal, which is selected by including an internal modifier in the member declaration. The intuitive
meaning of internal is “access limited to this project”.

• Private, which is selected by including a private modifier in the member declaration. The intuitive
meaning of private is “access limited to the containing type”.

Depending on the context in which a member declaration takes place, only certain types of declared accessibility
are permitted. Furthermore, when a member declaration does not include any access modifiers, the context in
which the declaration takes place determines the default declared accessibility.

• Namespaces implicitly have public declared accessibility. No access modifiers are allowed on namespace
declarations.

• Types declared in compilation units or namespaces can have public or internal declared accessibility
and default to internal declared accessibility.

• Class members can have any of the five types of declared accessibility and default to private declared
accessibility. (Note that a type declared as a member of a class can have any of the five types of declared
accessibility, whereas a type declared as a member of a namespace can have only public or internal
declared accessibility.)

• Struct members can have public, internal, or private declared accessibility and default to private
declared accessibility. Struct members cannot have protected or protected internal declared
accessibility.

• Interface members implicitly have public declared accessibility. No access modifiers are allowed on
interface member declarations.

• Enumeration members implicitly have public declared accessibility. No access modifiers are allowed on
enumeration member declarations.

3.3.2 Accessibility domains
The accessibility domain of a member is the (possibly disjoint) sections of program text in which access to the
member is permitted. For purposes of defining the accessibility domain of a member, a member is said to be
top-level if it is not declared within a type, and a member is said to be nested if it is declared within another
type. Furthermore, the program text of a project is defined as all program text contained in all source files of the
project, and the program text of a type is defined as all program text contained between the opening and closing
“{” and “}” tokens in the class-body, struct-body, interface-body, or enum-body of the type (including, possibly,
types that are nested within the type).

The accessibility domain of a predefined type (such as object, int, or double) is unlimited.

The accessibility domain of a top-level type T declared in a project P is defined as follows:

• If the declared accessibility of T is public , the accessibility domain of T is the program text of P and any
project that references P.

C# LANGUAGE REFERENCE

46 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• If the declared accessibility of T is internal , the accessibility domain of T is the program text of P.

From these definitions it follows that the accessibility domain of a top-level type is always at least the program
text of the project in which the type is declared.

The accessibility domain of a nested member M declared in a type T within a project P is defined as follows
(noting that M may itself possibly be a type):

• If the declared accessibility of M is public , the accessibility domain of M is the accessibility domain of T.

• If the declared accessibility of M is protected internal , the accessibility domain of M is the intersection
of the accessibility domain of T with the program text of P and the program text of any type derived from T
declared outside P.

• If the declared accessibility of M is protected , the accessibility domain of M is the intersection of the
accessibility domain of T with the program text of T and any type derived from T.

• If the declared accessibility of M is internal , the accessibility domain of M is the intersection of the
accessibility domain of T with the program text of P.

• If the declared accessibility of M is private , the accessibility domain of M is the program text of T.

From these definitions it follows that the accessibility domain of a nested member is always at least the program
text of the type in which the member is declared. Furthermore, it follows that the accessibility domain of a
member is never more inclusive than the accessibility domain of the type in which the member is declared.

In intuitive terms, when a type or member M is accessed, the following steps are evaluated to ensure that the
access is permitted:

• First, if M is declared within a type (as opposed to a compilation unit or a namespace), an error occurs if that
type is not accessible.

• Then, if M is public, the access is permitted.

• Otherwise, if M is protected internal, the access is permitted if it occurs within the project in which M
is declared, or if it occurs within a class derived from the class in which M is declared and takes place
through the derived class type (§3.3.3).

• Otherwise, if M is protected, the access is permitted if it occurs within the class in which M is declared, or
if it occurs within a class derived from the class in which M is declared and takes place through the derived
class type (§3.3.3).

• Otherwise, if M is internal, the access is permitted if it occurs within the project in which M is declared.

• Otherwise, if M is private, the access is permitted if it occurs within the type in which M is declared.

• Otherwise, the type or member is inaccessible, and an error occurs.

In the example

public class A
{

public static int X;
internal static int Y;
private static int Z;

}

internal class B
{

public static int X;
internal static int Y;
private static int Z;

Chapter 3 Basic concepts

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 47

public class C
{

public static int X;
internal static int Y;
private static int Z;

}

private class D
{

public static int X;
internal static int Y;
private static int Z;

}
}

the classes and members have the following accessibility domains:

• The accessibility domain of A and A.X is unlimited.

• The accessibility domain of A.Y, B, B.X , B.Y, B.C , B.C.X, and B.C.Y is the program text of the containing
project.

• The accessibility domain of A.Z is the program text of A.

• The accessibility domain of B.Z and B.D is the program text of B, including the program text of B.C and
B.D.

• The accessibility domain of B.C.Z is the program text of B.C.

• The accessibility domain of B.D.X, B.D.Y , and B.D.Z is the program text of B.D.

As the example illustrates, the accessibility domain of a member is never larger than that of a containing type.
For example, even though all X members have public declared accessibility, all but A.X have accessibility
domains that are constrained by a containing type.

As described in §3.2, all members of a base class, except for constructors and destructors, are inherited by
derived types. This includes even private members of a base class. However, the accessibility domain of a
private member includes only the program text of the type in which the member is declared. In the example

class A
{

int x;

static void F(B b) {
b.x = 1; // Ok

}
}

class B: A
{

static void F(B b) {
b.x = 1; // Error, x not accessible

}
}

the B class inherits the private member x from the A class. Because the member is private, it is only accessible
within the class-body of A. Thus, the access to b.x succeeds in the A.F method, but fails in the B.F method.

3.3.3 Protected access
When a protected member is accessed outside the program text of the class in which it is declared, and when
a protected internal member is accessed outside the program text of the project in which it is declared, the
access is required to take place through the derived class type in which the access occurs. Let B be a base class

C# LANGUAGE REFERENCE

48 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

that declares a protected member M, and let D be a class that derives from B. Within the class-body of D, access
to M can take one of the following forms:

• An unqualified type-name or primary-expression of the form M.

• A type-name of the form T.M, provided T is D or a class derived from D.

• A primary-expression of the form E.M, provided the type of E is D or a class derived from D.

• A primary-expression of the form base.M.

In addition to these forms of access, a derived class can access a protected constructor of a base class in a
constructor-initializer (§10.10.1).

In the example

public class A
{

protected int x;

static void F(A a, B b) {
a.x = 1; // Ok
b.x = 1; // Ok

}
}

public class B: A
{

static void F(A a, B b) {
a.x = 1; // Error, must access through instance of B
b.x = 1; // Ok

}
}

within A, it is possible to access x through instances of both A and B, since in either case the access takes place
through an instance of A or a class derived from A. However, within B, it is not possible to access x through an
instance of A, since A does not derive from B.

3.3.4 Accessibility constraints
Several constructs in the C# language require a type to be at least as accessible as a member or another type. A
type T is said to be at least as accessible as a member or type M if the accessibility domain of T is a superset of
the accessibility domain of M. In other words, T is at least as accessible as M if T is accessible in all contexts
where M is accessible.

The following accessibility constraints exist:

• The direct base class of a class type must be at least as accessible as the class type itself.

• The explicit base interfaces of an interface type must be at least as accessible as the interface type itself.

• The return type and parameter types of a delegate type must be at least as accessible as the delegate type
itself.

• The type of a constant must be at least as accessible as the constant itself.

• The type of a field must be at least as accessible as the field itself.

• The return type and parameter types of a method must be at least as accessible as the method itself.

• The type of a property must be at least as accessible as the property itself.

• The type of an event must be at least as accessible as the event itself.

Chapter 3 Basic concepts

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 49

• The type and parameter types of an indexer must be at least as accessible as the indexer itself.

• The return type and parameter types of an operator must be at least as accessible as the operator itself.

• The parameter types of a constructor must be at least as accessible as the constructor itself.

In the example

class A {...}

public class B: A {...}

the B class is in error because A is not at least as accessible as B.

Likewise, in the example

class A {...}

public class B
{

A F() {...}

internal A G() {...}

public A H() {...}
}

the H method in B is in error because the return type A is not at least as accessible as the method.

3.4 Signatures and overloading
Methods, constructors, indexers, and operators are characterized by their signatures:

• The signature of a method consists of the name of the method and the number, modifiers, and types of its
formal parameters. The signature of a method specifically does not include the return type.

• The signature of a constructor consists of the number, modifiers, and types of its formal parameters.

• The signature of an indexer consists of the number and types of its formal parameters. The signature of an
indexer specifically does not include the element type.

• The signature of an operator consists of the name of the operator and the number and types of its formal
parameters. The signature of an operator specifically does not include the result type.

Signatures are the enabling mechanism for overloading of members in classes, structs, and interfaces:

• Overloading of methods permits a class, struct, or interface to declare multiple methods with the same name,
provided the signatures of the methods are all unique.

• Overloading of constructors permits a class or struct to declare multiple constructors, provided the
signatures of the constructors are all unique.

• Overloading of indexers permits a class, struct, or interface to declare multiple indexers, provided the
signatures of the indexers are all unique.

• Overloading of operators permits a class or struct to declare multiple operators with the same name,
provided the signatures of the operators are all unique.

The following example shows a set of overloaded method declarations along with their signatures.

interface ITest
{

void F(); // F()

void F(int x); // F(int)

void F(ref int x); // F(ref int)

C# LANGUAGE REFERENCE

50 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

void F(out int x); // F(out int)

void F(int x, int y); // F(int, int)

int F(string s); // F(string)

int F(int x); // F(int)
}

Note that parameter modifiers are part of a signature. Thus, F(int), F(ref int) , and F(out int) are all
unique signatures. Furthermore note that even though the second and last method declarations differ in return
types, their signatures are both F(int). Thus, compiling the above example would produce errors for the
second and last methods.

3.5 Scopes
The scope of a name is the region of program text within which it is possible to refer to the entity declared by
the name without qualification of the name. Scopes can be nested, and an inner scope may redeclare the
meaning of a name from an outer scope. The name from the outer scope is then said to be hidden in the region of
program text covered by the inner scope, and access to the outer name is only possible by qualifying the name.

• The scope of a namespace member declared by a namespace-member-declaration with no enclosing
namespace-declaration is the entire program text of each compilation unit.

• The scope of a namespace member declared by a namespace-member-declaration within a namespace-
declaration whose fully qualified name is N is the namespace-body of every namespace-declaration whose
fully qualified name is N or starts with the same sequence of identifiers as N.

• The scope of a name defined or imported by a using-directive extends over the namespace-member-
declarations of the compilation-unit or namespace-body in which the using-directive occurs. A using-
directive may make zero or more namespace or type names available within a particular compilation-unit or
namespace-body, but does not contribute any new members to the underlying declaration space. In other
words, a using-directive is not transitive but rather affects only the compilation-unit or namespace-body in
which it occurs.

• The scope of a member declared by a class-member-declaration is the class-body in which the declaration
occurs. In addition, the scope of a class member extends to the class-body of those derived classes that are
included in the accessibility domain (§3.3.2) of the member.

• The scope of a member declared by a struct-member-declaration is the struct-body in which the declaration
occurs.

• The scope of a member declared by an enum-member-declaration is the enum-body in which the declaration
occurs.

• The scope of a parameter declared in a constructor-declaration is the constructor-initializer and block of
that constructor-declaration.

• The scope of a parameter declared in a method-declaration is the method-body of that method-declaration.

• The scope of a parameter declared in an indexer-declaration is the accessor-declarations of that indexer-
declaration.

• The scope of a parameter declared in an operator-declaration is the block of that operator-declaration.

• The scope of a local variable declared in a local-variable-declaration is the block in which the declaration
occurs. It is an error to refer to a local variable in a textual position that precedes the variable-declarator of
the local variable.

Chapter 3 Basic concepts

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 51

• The scope of a local variable declared in a for-initializer of a for statement is the for-initializer, the for-
condition, the for-iterator, and the contained statement of the for statement.

• The scope of a label declared in a labeled-statement is the block in which the declaration occurs.

Within the scope of a namespace, class, struct, or enumeration member it is possible to refer to the member in a
textual position that precedes the declaration of the member. For example

class A
{

void F() {
i = 1;

}

int i = 0;
}

Here, it is valid for F to refer to i before it is declared.

Within the scope of a local variable, it is an error to refer to the local variable in a textual position that precedes
the variable-declarator of the local variable. For example

class A
{

int i = 0;

void F() {
i = 1; // Error, use precedes declaration
int i;
i = 2;

}

void G() {
int j = (j = 1); // Legal

}

void H() {
int a = 1, b = ++a; // Legal

}
}

In the F method above, the first assignment to i specifically does not refer to the field declared in the outer
scope. Rather, it refers to the local variable and it is in error because it textually precedes the declaration of the
variable. In the G method, the use of j in the initializer for the declaration of j is legal because the use does not
precede the variable-declarator. In the H method, a subsequent variable-declarator legally refers to a local
variable declared in an earlier variable-declarator within the same local-variable-declaration.

The scoping rules for local variables are designed to guarantee that the meaning of a name used in an expression
context is always the same within a block. If the scope of a local variable was to extend only from its declaration
to the end of the block, then in the example above, the first assignment would assign to the instance variable and
the second assignment would assign to the local variable, possibly leading to errors if the statements of the block
were later to be rearranged.

The meaning of a name within a block may differ based on the context in which the name is used. In the
example

class Test
{

static void Main() {
string A = "hello, world";
string s = A; // expression context

Type t = typeof(A); // type context

C# LANGUAGE REFERENCE

52 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Console.WriteLine(s); // writes "hello, world"
Console.WriteLine(t.ToString()); // writes "Type: A"

}
}

the name A is used in an expression context to refer to the local variable A and in a type context to refer to the
class A.

3.5.1 Name hiding
The scope of an entity typically encompasses more program text than the declaration space of the entity. In
particular, the scope of an entity may include declarations that introduce new declaration spaces containing
entities of the same name. Such declarations cause the original entity to become hidden. Conversely, an entity is
said to be visible when it is not hidden.

Name hiding occurs when scopes overlap through nesting and when scopes overlap through inheritance. The
characteristics of the two types of hiding are described in the following sections.

3.5.1.1 Hiding through nesting
Name hiding through nesting can occur as a result of nesting namespaces or types within namespaces, as a result
of nesting types within classes or structs, and as a result of parameter and local variable declarations. Name
hiding through nesting of scopes always occurs “silently”, i.e. no errors or warnings are reported when outer
names are hidden by inner names.

In the example

class A
{

int i = 0;

void F() {
int i = 1;

}

void G() {
i = 1;

}
}

within the F method, the instance variable i is hidden by the local variable i, but within the G method, i still
refers to the instance variable.

When a name in an inner scope hides a name in an outer scope, it hides all overloaded occurrences of that name.
In the example

class Outer
{

static void F(int i) {}

static void F(string s) {}

class Inner
{

void G() {
F(1); // Invokes Outer.Inner.F
F("Hello"); // Error

}

static void F(long l) {}
}

}

Chapter 3 Basic concepts

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 53

the call F(1) invokes the F declared in Inner because all outer occurrences of F are hidden by the inner
declaration. For the same reason, the call F("Hello") is in error.

3.5.1.2 Hiding through inheritance
Name hiding through inheritance occurs when classes or structs redeclare names that were inherited from base
classes. This type of name hiding takes one of the following forms:

• A constant, field, property, event, or type introduced in a class or struct hides all base class members with
the same name.

• A method introduced in a class or struct hides all non-method base class members with the same name, and
all base class methods with the same signature (method name and parameter count, modifiers, and types).

• An indexer introduced in a class or struct hides all base class indexers with the same signature (parameter
count and types).

The rules governing operator declarations (§10.9) make it impossible for a derived class to declare an operator
with the same signature as an operator in a base class. Thus, operators never hide one another.

Contrary to hiding a name from an outer scope, hiding an accessible name from an inherited scope causes a
warning to be reported. In the example

class Base
{

public void F() {}
}

class Derived: Base
{

public void F() {} // Warning, hiding an inherited name
}

the declaration of F in Derived causes a warning to be reported. Hiding an inherited name is specifically not an
error, since that would preclude separate evolution of base classes. For example, the above situation might have
come about because a later version of Base introduced a F method that wasn’t present in an earlier version of
the class. Had the above situation been an error, then any change made to a base class in a separately versioned
class library could potentially cause derived classes to become invalid.

The warning caused by hiding an inherited name can be eliminated through use of the new modifier:

class Base
{

public void F() {}
}

class Derived: Base
{

new public void F() {}
}

The new modifier indicates that the F in Derived is “new”, and that it is indeed intended to hide the inherited
member.

A declaration of a new member hides an inherited member only within the scope of the new member.

class Base
{

public static void F() {}
}

C# LANGUAGE REFERENCE

54 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

class Derived: Base
{

new private static void F() {} // Hides Base.F in Derived only
}

class MoreDerived: Derived
{

static void G() { F(); } // Invokes Base.F
}

In the example above, the declaration of F in Derived hides the F that was inherited from Base, but since the
new F in Derived has private access, its scope does not extend to MoreDerived. Thus, the call F() in
MoreDerived.G is valid and will invoke Base.F.

3.6 Namespace and type names
Several contexts in a C# program require a namespace-name or a type-name to be specified. Either form of
name is written as one or more identifiers separated by “.” tokens.

namespace-name:
namespace-or-type-name

type-name:
namespace-or-type-name

namespace-or-type-name:
identifier
namespace-or-type-name . identifier

A type-name is a namespace-or-type-name that refers to a type. Following resolution as described below, the
namespace-or-type-name of a type-name must refer to a type, or otherwise an error occurs.

A namespace-name is a namespace-or-type-name that refers to a namespace. Following resolution as described
below, the namespace-or-type-name of a namespace-name must refer to a namespace, or otherwise an error
occurs.

The meaning of a namespace-or-type-name is determined as follows:

• If the namespace-or-type-name consists of a single identifier:

• If the namespace-or-type-name appears within the body of a class or struct declaration, then starting
with that class or struct declaration and continuing with each enclosing class or struct declaration (if
any), if a member with the given name exists, is accessible, and denotes a type, then the namespace-or-
type-name refers to that member. Note that non-type members (constructors, constants, fields, methods,
properties, indexers, and operators) are ignored when determining the meaning of a namespace-or-type-
name.

• Otherwise, starting with the namespace declaration in which the namespace-or-type-name occurs (if
any), continuing with each enclosing namespace declaration (if any), and ending with the global
namespace, the following steps are evaluated until an entity is located:

• If the namespace contains a namespace member with the given name, then the namespace-or-type-
name refers to that member and, depending on the member, is classified as a namespace or a type.

• Otherwise, if the namespace declaration contains a using-alias-directive that associates the given
name with an imported namespace or type, then the namespace-or-type-name refers to that
namespace or type.

Chapter 3 Basic concepts

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 55

• Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain exactly one type with the given name, then the namespace-or-type-name refers
to that type.

• Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain more than one type with the given name, then the namespace-or-type-name is
ambiguous and an error occurs.

• Otherwise, the namespace-or-type-name is undefined and an error occurs.

• Otherwise, the namespace-or-type-name is of the form N.I, where N is a namespace-or-type-name
consisting of all identifiers but the rightmost one, and I is the rightmost identifier. N is first resolved as a
namespace-or-type-name. If the resolution of N is not successful, an error occurs. Otherwise, N.I is
resolved as follows:

• If N is a namespace and I is the name of an accessible member of that namespace, then N.I refers to
that member and, depending on the member, is classified as a namespace or a type.

• If N is a class or struct type and I is the name of an accessible type in N, then N.I refers to that type.

• Otherwise, N.I is an invalid namespace-or-type-name, and an error occurs.

3.6.1 Fully qualified names
Every namespace and type has a fully qualified name which uniquely identifies the namespace or type amongst
all others. The fully qualified name of a namespace or type N is determined as follows:

• If N is a member of the global namespace, its fully qualified name is N.

• Otherwise, its fully qualified name is S.N, where S is the fully qualified name of the namespace or type in
which N is declared.

In other words, the fully qualified name of N is the complete hierarchical path of identifiers that lead to N,
starting from the global namespace. Because every member of a namespace or type must have a unique name, it
follows that the fully qualified name of a namespace or type is always unique.

The example below shows several namespace and type declarations along with their associated fully qualified
names.

class A {} // A

namespace X // X
{

class B // X.B
{

class C {} // X.B.C
}

namespace Y // X.Y
{

class D {} // X.Y.D
}

}

namespace X.Y // X.Y
{

class E {} // X.Y.E
}

Chapter 4 Types

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 57

4. Types

The types of the C# language are divided into three categories: Value types, reference types, and pointer types.

type:
value-type
reference-type
pointer-type

Pointer types can be used only in unsafe code, and are discussed further in §19.2.

Value types differ from reference types in that variables of the value types directly contain their data, whereas
variables of the reference types store references to their data, the latter known as objects. With reference types,
it is possible for two variables to reference the same object, and thus possible for operations on one variable to
affect the object referenced by the other variable. With value types, the variables each have their own copy of
the data, and it is not possible for operations on one to affect the other.

C#’s type system is unified such that a value of any type can be treated as an object. Every type in C# directly
or indirectly derives from the object class type, and object is the ultimate base class of all types. Values of
reference types are treated as objects simply by viewing the values as type object. Values of value types are
treated as objects by performing boxing and unboxing operations (§4.3).

4.1 Value types
A value type is either a struct type or an enumeration type. C# provides a set of predefined struct types called the
simple types. The simple types are identified through reserved words, and are further subdivided into numeric
types, integral types, and floating point types.

value-type:
struct-type
enum-type

struct-type:
type-name
simple-type

simple-type:
numeric-type
bool

numeric-type:
integral-type
floating-point-type
decimal

C# LANGUAGE REFERENCE

58 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

integral-type:
sbyte
byte
short
ushort
int
uint
long
ulong
char

floating-point-type:
float
double

enum-type:
type-name

All value types implicitly inherit from class object. It is not possible for any type to derive from a value type,
and value types are thus implicitly sealed.

A variable of a value type always contains a value of that type. Unlike reference types, it is not possible for a
value of a value type to be null or to reference an object of a more derived type.

Assignment to a variable of a value type creates a copy of the value being assigned. This differs from
assignment to a variable of a reference type, which copies the reference but not the object identified by the
reference.

4.1.1 Default constructors
All value types implicitly declare a public parameterless constructor called the default constructor. The default
constructor returns a zero-initialized instance known as the default value for the value type:

• For all simple-types, the default value is the value produced by a bit pattern of all zeros:

• For sbyte, byte, short , ushort, int , uint, long , and ulong, the default value is 0.

• For char, the default value is '\x0000'.

• For float, the default value is 0.0f.

• For double, the default value is 0.0d.

• For decimal, the default value is 0.0m.

• For bool, the default value is false.

• For an enum-type E, the default value is 0.

• For a struct-type, the default value is the value produced by setting all value type fields to their default value
and all reference type fields to null.

Like any other constructor, the default constructor of a value type is invoked using the new operator. In the
example below, the i and j variables are both initialized to zero.

Chapter 4 Types

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 59

class A
{

void F() {
int i = 0;
int j = new int();

}
}

Because every value type implicitly has a public parameterless constructor, it is not possible for a struct type to
contain an explicit declaration of a parameterless constructor. A struct type is however permitted to declare
parameterized constructors. For example

struct Point
{

int x, y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}
}

Given the above declaration, the statements

Point p1 = new Point();
Point p2 = new Point(0, 0);

both create a Point with x and y initialized to zero.

4.1.2 Struct types
A struct type is a value type that can declare constructors, constants, fields, methods, properties, indexers,
operators, and nested types. Struct types are described in §11.

4.1.3 Simple types
C# provides a set of predefined struct types called the simple types. The simple types are identified through
reserved words, but these reserved words are simply aliases for predefined struct types in the System
namespace, as described in the table below.

Reserved word Aliased type
sbyte System.SByte

byte System.Byte

short System.Int16

ushort System.UInt16

int System.Int32

uint System.UInt32

long System.Int64

ulong System.UInt64

char System.Char

float System.Single

double System.Double

bool System.Boolean

decimal System.Decimal

C# LANGUAGE REFERENCE

60 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

A simple type and the struct type it aliases are completely indistinguishable . In other words, writing the reserved
word byte is exactly the same as writing System.Byte , and writing System.Int32 is exactly the same as
writing the reserved word int.

Because a simple type aliases a struct type, every simple type has members. For example, int has the members
declared in System.Int32 and the members inherited from System.Object , and the following statements
are permitted:

int i = int.MaxValue; // System.Int32.MaxValue constant
string s = i.ToString(); // System.Int32.ToString() instance method
string t = 123.ToString(); // System.Int32.ToString() instance method

Notice in particular that integer literals are values of type int, and therefore also values of the System.Int32
struct type.

The simple types differ from other struct types in that they permit certain additional operations:

• Most simple types permit values to be created by writing literals (§2.5.3). For example, 123 is a literal of
type int and 'a' is a literal of type char. C# makes no provision for literals of other struct types, and
values of other struct types are ultimately always created through constructors of those struct types.

• When the operands of an expression are all simple type constants, it is possible for the compiler to evaluate
the expression at compile time. Such an expression is known as a constant-expression (§7.15). Expressions
involving operators defined by other struct types always imply run time evaluation.

• Through const declarations it is possible to declare constants of the simple types (§10.3). It is not possible
to have constants of other struct types, but a similar effect is provided by static readonly fields.

• Conversions involving simple types can participate in evaluation of conversion operators defined by other
struct types, but a user-defined conversion operator can never participate in evaluation of another user-
defined operator (§6.4.2).

4.1.4 Integral types
C# supports nine integral types: sbyte, byte , short, ushort , int, uint , long, ulong , and char. The
integral types have the following sizes and ranges of values:

• The sbyte type represents signed 8-bit integers with values between –128 and 127.

• The byte type represents unsigned 8-bit integers with values between 0 and 255.

• The short type represents signed 16-bit integers with values between –32768 and 32767.

• The ushort type represents unsigned 16-bit integers with values between 0 and 65535.

• The int type represents signed 32-bit integers with values between –2147483648 and 2147483647.

• The uint type represents unsigned 32-bit integers with values between 0 and 4294967295.

• The long type represents signed 64-bit integers with values between –9223372036854775808 and
9223372036854775807.

• The ulong type represents unsigned 64-bit integers with values between 0 and 18446744073709551615.

• The char type represents unsigned 16-bit integers with values between 0 to 65535. The set of possible
values for the char type corresponds to the Unicode character set.

The integral-type unary and binary operators always operate with signed 32-bit precision, unsigned 32-bit
precision, signed 64-bit precision, or unsigned 64-bit precision:

Chapter 4 Types

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 61

• For the unary + and ~ operators, the operand is converted to type T, where T is the first of int, uint, long,
and ulong that can fully represent all possible values of the operand. The operation is then performed using
the precision of type T, and the type of the result T.

• For the unary – operator, the operand is converted to type T, where T is the first of int and long that can
fully represent all possible values of the operand. The operation is then performed using the precision of
type T, and the type of the result is T. The unary – operator cannot be applied to operands of type ulong.

• For the binary + , –, *, / , %, &, ^ , |, == , !=, >, < , >=, and <= operators, the operands are converted to type T,
where T is the first of int, uint, long, and ulong that can fully represent all possible values of each
operand. The operation is then performed using the precision of type T, and the type of the result is T (or
bool for the relational operators).

• For the binary << and >> operators, the left operand is converted to type T, where T is the first of int,
uint, long, and ulong that can fully represent all possible values of the operand. The operation is then
performed using the precision of type T, and the type of the result T.

The char type is classified as an integral type, but it differs from the other integral types in two ways:

• There are no implicit conversions from other types to the char type. In particular, even though the sbyte,
byte, and ushort types have ranges of values that are fully representable using the char type, implicit
conversions from sbyte , byte, or ushort to char do not exist.

• Constants of the char type must be written as character-literals. Character constants can only be written as
integer-literals in combination with a cast. For example, (char)10 is the same as '\x000A'.

The checked and unchecked operators and statements are used to control overflow checking for integral-type
arithmetic operations and conversions (§7.5.13). In a checked context, an overflow produces a compile-time
error or causes an OverflowException to be thrown. In an unchecked context, overflows are ignored and
any high-order bits that do not fit in the destination type are discarded.

4.1.5 Floating point types
C# supports two floating point types: float and double. The float and double types are represented using
the 32-bit single-precision and 64-bit double-precision IEEE 754 formats, which provide the following sets of
values:

• Positive zero and negative zero. In most situations, positive zero and negative zero behave identically as the
simple value zero, but certain operations distinguish between the two.

• Positive infinity and negative infinity. Infinities are produced by such operations as dividing a non-zero
number by zero. For example 1.0 / 0.0 yields positive infinity, and –1.0 / 0.0 yields negative infinity.

• The Not-a-Number value, often abbreviated NaN. NaN’s are produced by invalid floating-point operations,
such as dividing zero by zero.

• The finite set of non-zero values of the form s × m × 2e, where s is 1 or -1, and m and e are determined by
the particular floating-point type: For float , 0 < m < 224 and -149 = e = 104, and for double, 0 < m < 253

and -1075 = e = 970.

The float type can represent values ranging from approximately 1.5 × 10-45 to 3.4 × 1038 with a precision of 7
digits.

The double type can represent values ranging from approximately 5.0 × 10-324 to 1.7 × 10308 with a precision of
15-16 digits.

If one of the operands of a binary operator is of a floating-point type, then the other operand must be of an
integral type or a floating-point type, and the operation is evaluated as follows:

C# LANGUAGE REFERENCE

62 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• If one of the operands of is of an integral type, then that operand is converted to the floating-point type of
the other operand.

• Then, if either of the operands is of type double, the other operand is converted to double, the operation is
performed using at least double range and precision, and the type of the result is double (or bool for the
relational operators).

• Otherwise, the operation is performed using at least float range and precision, and the type of the result is
float (or bool for the relational operators).

The floating-point operators, including the assignment operators, never produce exceptions. Instead, in
exceptional situations, floating-point operations produce zero, infinity, or NaN, as described below:

• If the result of a floating-point operation is too small for the destination format, the result of the operation
becomes positive zero or negative zero.

• If the result of a floating-point operation is too large for the destination format, the result of the operation
becomes positive infinity or negative infinity.

• If a floating-point operation is invalid, the result of the operation becomes NaN.

• If one or both operands of a floating-point operation is NaN, the result of the operation becomes NaN.

Floating-point operations may be performed with higher precision than the result type of the operation. For
example, some hardware architectures support an “extended” or “long double” floating-point type with greater
range and precision than the double type, and implicitly perform all floating-point operations using this higher
precision type. Only at excessive cost in performance can such hardware architectures be made to perform
floating-point operations with less precision, and rather than require an implementation to forfeit both
performance and precision, C# allows a higher precision type to be used for all floating-point operations. Other
than delivering more precise results, this rarely has any measurable effects. However, in expressions of the form
x * y / z, where the multiplication produces a result that is outside the double range, but the subsequent
division brings the temporary result back into the double range, the fact that the expression is evaluated in a
higher range format may cause a finite result to be produced instead of an infinity.

4.1.6 The decimal type
The decimal type is a 128-bit data type suitable for financial and monetary calculations. The decimal type
can represent values ranging from 1.0 × 10-28 to approximately 7.9 × 1028 with 28-29 significant digits.

The finite set of values of type decimal are of the form s × m × 10e, where s is 1 or –1, 0 = m < 296, and -28 = e
= 0. The decimal type does not support signed zeros, infinities, and NaN's.

A decimal is represented as a 96-bit integer scaled by a power of ten. For decimals with an absolute value
less than 1.0m, the value is exact to the 28th decimal place, but no further. For decimals with an absolute value
greater than or equal to 1.0m, the value is exact to 28 or 29 digits. Contrary to the float and double data
types, decimal fractional numbers such as 0.1 can be represented exactly in the decimal representation. In the
float and double representations, such numbers are often infinite fractions, making those representations
more prone to round-off errors.

If one of the operands of a binary operator is of type decimal, then the other operand must be of an integral
type or of type decimal. If an integral type operand is present, it is converted to decimal before the operation
is performed.

Operations on values of type decimal are exact to 28 or 29 digits, but to no more than 28 decimal places. Results
are rounded to the nearest representable value, and, when a result is equally close to two representable values, to
the value that has an even number in the least significant digit position.

Chapter 4 Types

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 63

If a decimal arithmetic operation produces a value that is too small for the decimal format after rounding, the
result of the operation becomes zero. If a decimal arithmetic operation produces a result that is too large for the
decimal format, an OverflowException is thrown.

The decimal type has greater precision but smaller range than the floating-point types. Thus, conversions from
the floating-point types to decimal might produce overflow exceptions, and conversions from decimal to the
floating-point types might cause loss of precision. For these reasons, no implicit conversions exist between the
floating-point types and decimal, and without explicit casts, it is not possible to mix floating-point and
decimal operands in the same expression.

4.1.7 The bool type
The bool type represents boolean logical quantities. The possible values of type bool are true and false.

No standard conversions exist between bool and other types. In particular, the bool type is distinct and
separate from the integral types, and a bool value cannot be used in place of an integral value, nor vice versa.

In the C and C++ languages, a zero integral value or a null pointer can be converted to the boolean value false,
and a non-zero integral value or a non-null pointer can be converted to the boolean value true. In C#, such
conversions are accomplished by explicitly comparing an integral value to zero or explicitly comparing an
object reference to null.

4.1.8 Enumeration types
An enumeration type is a distinct type with named constants. Every enumeration type has an underlying type,
which can be either byte, short, int, or long. Enumeration types are defined through enumeration
declarations (§14.1).

4.2 Reference types
A reference type is a class type, an interface type, an array type, or a delegate type.

reference-type:
class-type
interface-type
array-type
delegate-type

class-type:
type-name
object
string

interface-type:
type-name

array-type:
non-array-type rank-specifiers

non-array-type:
type

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank-specifier:
[dim-separatorsopt]

C# LANGUAGE REFERENCE

64 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

 dim-separators:
,
dim-separators ,

delegate-type:
type-name

A reference type value is a reference to an instance of the type, the latter known as an object. The special value
null is compatible with all reference types and indicates the absence of an instance.

4.2.1 Class types
A class type defines a data structure that contains data members (constants, fields, and events), function
members (methods, properties, indexers, operators, constructors, and destructors), and nested types. Class types
support inheritance, a mechanism whereby derived classes can extend and specialize base classes. Instances of
class types are created using object-creation-expressions (§7.5.10.1).

Class types are described in §10.

4.2.2 The object type
The object class type is the ultimate base class of all other types. Every type in C# directly or indirectly
derives from the object class type.

The object keyword is simply an alias for the predefined System.Object class. Writing the keyword
object is exactly the same as writing System.Object , and vice versa.

4.2.3 The string type
The string type is a sealed class type that inherits directly from object. Instances of the string class
represent Unicode character strings.

Values of the string type can be written as string literals (§2.5.3.5).

The string keyword is simply an alias for the predefined System.String class. Writing the keyword
string is exactly the same as writing System.String , and vice versa.

4.2.4 Interface types

4.2.5 Array types
An array is a data structure that contains a number of variables which are accessed through computed indices.
The variables contained in an array, also called the elements of the array, are all of the same type, and this type
is called the element type of the array.

Array types are described in §12.

4.2.6 Delegate types
A delegate is a data structure that refers to a static method or to an object instance and an instance method of
that object.

The closest equivalent of a delegate in C or C++ is a function pointer, but whereas a function pointer can only
reference static functions, a delegate can reference both static and instance methods. In the latter case, the
delegate stores not only a reference to the method’s entry point, but also a reference to the object instance for
which to invoke the method.

Delegate types are described in §15.

Chapter 4 Types

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 65

4.3 Boxing and unboxing
Boxing and unboxing is a central concept in C#’s type system. It provides a binding link between value-types
and reference-types by permitting any value of a value-type to be converted to and from type object. Boxing
and unboxing enables a unified view of the type system wherein a value of any type can ultimately be treated as
an object.

4.3.1 Boxing conversions
A boxing conversion permits any value-type to be implicitly converted to the type object or to any interface-
type implemented by the value-type. Boxing a value of a value-type consists of allocating an object instance and
copying the value-type value into that instance.

The actual process of boxing a value of a value-type is best explained by imagining the existence of a boxing
class for that type. For any value-type T, the boxing class would be declared as follows:

class T_Box
{

T value;

T_Box(T t) {
value = t;

}
}

Boxing of a value v of type T now consists of executing the expression new T_Box(v), and returning the
resulting instance as a value of type object. Thus, the statements

int i = 123;
object box = i;

conceptually correspond to

int i = 123;
object box = new int_Box(i);

Boxing classes like T_Box and int_Box above don’t actually exist and the dynamic type of a boxed value isn’t
actually a class type. Instead, a boxed value of type T has the dynamic type T, and a dynamic type check using
the is operator can simply reference type T. For example,

int i = 123;
object box = i;
if (box is int) {

Console.Write("Box contains an int");
}

will output the string “Box contains an int” on the console.

A boxing conversion implies making a copy of the value being boxed. This is different from a conversion of a
reference-type to type object, in which the value continues to reference the same instance and simply is
regarded as the less derived type object. For example, given the declaration

struct Point
{

public int x, y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}
}

the following statements

C# LANGUAGE REFERENCE

66 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Point p = new Point(10, 10);
object box = p;
p.x = 20;
Console.Write(((Point)box).x);

will output the value 10 on the console because the implicit boxing operation that occurs in the assignment of p
to box causes the value of p to be copied. Had Point instead been declared a class, the value 20 would be
output because p and box would reference the same instance.

4.3.2 Unboxing conversions
An unboxing conversion permits an explicit conversion from type object to any value-type or from any
interface-type to any value-type that implements the interface-type. An unboxing operation consists of first
checking that the object instance is a boxed value of the given value-type, and then copying the value out of the
instance.

Referring to the imaginary boxing class described in the previous section, an unboxing conversion of an object
box to a value-type T consists of executing the expression ((T_Box)box).value. Thus, the statements

object box = 123;
int i = (int)box;

conceptually correspond to

object box = new int_Box(123);
int i = ((int_Box)box).value;

For an unboxing conversion to a given value-type to succeed at run-time, the value of the source argument must
be a reference to an object that was previously created by boxing a value of that value-type. If the source
argument is null or a reference to an incompatible object, an InvalidCastException is thrown.

Chapter 5 Variables

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 67

5. Variables

Variables represent storage locations. Every variable has a type that determines what values can be stored in the
variable. C# is a type-safe language, and the C# compiler guarantees that values stored in variables are always of
the appropriate type. The value of a variable can be changed through assignment or through use of the ++ and -
- operators.

A variable must be definitely assigned (§5.3) before its value can be obtained.

As described in the following sections, variables are either initially assigned or initially unassigned. An initially
assigned variable has a well defined initial value and is always considered definitely assigned. An initially
unassigned variable has no initial value. For an initially unassigned variable to be considered definitely assigned
at a certain location, an assignment to the variable must occur in every possible execution path leading to that
location.

5.1 Variable categories
C# defines seven categories of variables: Static variables, instance variables, array elements, value parameters,
reference parameters, output parameters, and local variables. The sections that follow describe each of these
categories.

In the example

class A
{

static int x;
int y;

void F(int[] v, int a, ref int b, out int c) {
int i = 1;

}
}

x is a static variable, y is an instance variable, v[0] is an array element, a is a value parameter, b is a reference
parameter, c is an output parameter, and i is a local variable.

5.1.1 Static variables
A field declared with the static modifier is called a static variable. A static variable comes into existence
when the type in which it is declared is loaded, and ceases to exist when the type in which it is declared is
unloaded.

The initial value of a static variable is the default value (§5.2) of the variable’s type.

For purposes of definite assignment checking, a static variable is considered initially assigned.

5.1.2 Instance variables
A field declared without the static modifier is called an instance variable.

5.1.2.1 Instance variables in classes
An instance variable of a class comes into existence when a new instance of that class is created, and ceases to
exist when there are no references to that instance and the destructor of the instance has executed.

The initial value of an instance variable of a class is the default value (§5.2) of the variable’s type.

C# LANGUAGE REFERENCE

68 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

For purposes of definite assignment checking, an instance variable of a class is considered initially assigned.

5.1.2.2 Instance variables in structs
An instance variable of a struct has exactly the same lifetime as the struct variable to which it belongs. In other
words, when a variable of a struct type comes into existence or ceases to exist, so do the instance variables of
the struct.

The initial assignment state of an instance variable of a struct in the same as that of the containing struct
variable. In other words, when a struct variable is considered initially assigned, so are its instance variables, and
when a struct variable is considered initially unassigned, its instance variables are likewise unassigned.

5.1.3 Array elements
The elements of an array come into existence when an array instance is created, and cease to exist when there
are no references to that array instance.

The initial value of each of the elements of an array is the default value (§5.2) of the type of the array elements.

For purposes of definite assignment checking, an array element is considered initially assigned.

5.1.4 Value parameters
A parameter declared without a ref or out modifier is a value parameter.

A value parameter comes into existence upon invocation of the function member (method, constructor, accessor,
or operator) to which the parameter belongs, and is initialized with the value of the argument given in the
invocation. A value parameter ceases to exist upon return of the function member.

For purposes of definite assignment checking, a value parameter is considered initially assigned.

5.1.5 Reference parameters
A parameter declared with a ref modifier is a reference parameter.

A reference parameter does not create a new storage location. Instead, a reference parameter represents the same
storage location as the variable given as the argument in the function member invocation. Thus, the value of a
reference parameter is always the same as the underlying variable.

The following definite assignment rules apply to reference parameters. Note the different rules for output
parameters described in §5.1.6.

• A variable must be definitely assigned (§5.3) before it can be passed as a reference parameter in a function
member invocation.

• Within a function member, a reference parameter is considered initially assigned.

Within an instance method or instance accessor of a struct type, the this keyword behaves exactly as a
reference parameter of the struct type (§7.5.7).

5.1.6 Output parameters
A parameter declared with an out modifier is an output parameter.

An output parameter does not create a new storage location. Instead, an output parameter represents the same
storage location as the variable given as the argument in the function member invocation. Thus, the value of an
output parameter is always the same as the underlying variable.

The following definite assignment rules apply to output parameters. Note the different rules for reference
parameters described in §5.1.5.

Chapter 5 Variables

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 69

• A variable need not be definitely assigned before it can be passed as an output parameter in a function
member invocation.

• Following a function member invocation, each variable that was passed as an output parameter is considered
assigned in that execution path.

• Within a function member, an output parameter is considered initially unassigned.

• Every output parameter of a function member must be definitely assigned (§5.3) before the function
member returns.

Within a constructor of a struct type, the this keyword behaves exactly as an output parameter of the struct
type (§7.5.7).

5.1.7 Local variables
A local variable is declared by a local-variable-declaration, which may occur in a block , a for-statement, or a
switch-statement. A local variable comes into existence when control enters the block , for-statement, or switch-
statement that immediately contains the local variable declaration. A local variable ceases to exist when control
leaves its immediately containing block , for-statement, or switch-statement.

A local variable is not automatically initialized and thus has no default value. For purposes of definite
assignment checking, a local variable is considered initially unassigned. A local-variable-declaration may
include a variable-initializer, in which case the variable is considered definitely assigned in its entire scope,
except within the expression provided in the variable-initializer.

Within the scope of a local variable, it is an error to refer to the local variable in a textual position that precedes
its variable-declarator.

5.2 Default values
The following categories of variables are automatically initialized to their default values:

• Static variables.

• Instance variables of class instances.

• Array elements.

The default value of a variable depends on the type of the variable and is determined as follows:

• For a variable of a value-type, the default value is the same as the value computed by the value-type’s
default constructor (§4.1.1).

• For a variable of a reference-type, the default value is null.

5.3 Definite assignment
At a given location in the executable code of a function member, a variable is said to be definitely assigned if the
compiler can prove, by static flow analysis, that the variable has been automatically initialized or has been the
target of at least one assignment. The rules of definite assignment are:

• An initially assigned variable (§5.3.1) is always considered definitely assigned.

• An initially unassigned variable (§5.3.2) is considered definitely assigned at a given location if all possible
execution paths leading to that location contain at least one of the following:

• A simple assignment (§7.13.1) in which the variable is the left operand.

C# LANGUAGE REFERENCE

70 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• An invocation expression (§7.5.5) or object creation expression (§7.5.10.1) that passes the variable as an
output parameter.

• For a local variable, a local variable declaration (§8.5) that includes a variable initializer.

The definite assignment state of instance variables of a struct-type variable are tracked individually as well as
collectively. In additional to the rules above, the following rules apply to struct-type variables and their instance
variables:

• An instance variable is considered definitely assigned if its containing struct-type variable is considered
definitely assigned.

• A struct-type variable is considered definitely assigned if each of its instance variables are considered
definitely assigned.

Definite assignment is a requirement in the following contexts:

• A variable must be definitely assigned at each location where its value is obtained. This ensures that
undefined values never occur. The occurrence of a variable in an expression is considered to obtain the
value of the variable, except when

• the variable is the left operand of a simple assignment,

• the variable is passed as an output parameter, or

• the variable is a struct-type variable and occurs as the left operand of a member access.

• A variable must be definitely assigned at each location where it is passed as a reference parameter. This
ensures that the function member being invoked can consider the reference parameter initially assigned.

• All output parameters of a function member must be definitely assigned at each location where the function
member returns (through a return statement or through execution reaching the end of the function member
body). This ensures that function members do no return undefined values in output parameters, thus
enabling the compiler to consider a function member invocation that takes a variable as an output parameter
equivalent to an assignment to the variable.

• The this variable of a struct-type constructor must be definitely assigned at each location where the
constructor returns.

The following example demonstrates how the different blocks of a try statement affect definite assignment.

Chapter 5 Variables

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 71

class A
{

static void F() {
int i, j;
try {

// neither i nor j definitely assigned
i = 1;
// i definitely assigned
j = 2;
// i and j definitely assigned

}
catch {

// neither i nor j definitely assigned
i = 3;
// i definitely assigned

}
finally {

// neither i nor j definitely assigned
i = 4;
// i definitely assigned
j = 5;
// i and j definitely assigned

}
// i and j definitely assigned

}
}

The static flow analysis performed to determine the definite assignment state of a variable takes into account the
special behavior of the &&, ||, and ?: operators. In each of the methods in the example

class A
{

static void F(int x, int y) {
int i;
if (x >= 0 && (i = y) >= 0) {

// i definitely assigned
}
else {

// i not definitely assigned
}
// i not definitely assigned

}

static void G(int x, int y) {
int i;
if (x >= 0 || (i = y) >= 0) {

// i not definitely assigned
}
else {

// i definitely assigned
}
// i not definitely assigned

}
}

the variable i is considered definitely assigned in one of the embedded statements of an if statement but not in
the other. In the if statement in the F method, the variable i is definitely assigned in the first embedded
statement because execution of the expression (i = y) always precedes execution of this embedded statement.
In contrast, the variable i is not definitely assigned in the second embedded statement since the variable i may
be unassigned. Specifically, the variable i is unassigned if the value of the variable x is negative. Similarly, in
the G method, the variable i is definitely assigned in the second embedded statement but not in the first
embedded statement.

C# LANGUAGE REFERENCE

72 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

5.3.1 Initially assigned variables
The following categories of variables are classified as initially assigned:

• Static variables.

• Instance variables of class instances.

• Instance variables of initially assigned struct variables.

• Array elements.

• Value parameters.

• Reference parameters.

5.3.2 Initially unassigned variables
The following categories of variables are classified as initially unassigned:

• Instance variables of initially unassigned struct variables.

• Output parameters, including the this variable of struct constructors.

• Local variables.

5.4 Variable references
A variable-reference is an expression that is classified as a variable. A variable-reference denotes a storage
location that can be accessed both to fetch the current value and to store a new value. In C and C++, a variable-
reference is known as an lvalue.

variable-reference:
expression

The following constructs require an expression to be a variable-reference:

• The left hand side of an assignment (which may also be a property access or an indexer access).

• An argument passed as a ref or out parameter in a method or constructor invocation.

Chapter 6 Conversions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 73

6. Conversions

6.1 Implicit conversions
The following conversions are classified as implicit conversions:

• Identity conversions

• Implicit numeric conversions

• Implicit enumeration conversions.

• Implicit reference conversions

• Boxing conversions

• Implicit constant expression conversions

• User-defined implicit conversions

Implicit conversions can occur in a variety of situations, including function member invocations (§7.4.3), cast
expressions (§7.6.8), and assignments (§7.13).

The pre-defined implicit conversions always succeed and never cause exceptions to be thrown. Properly
designed user-defined implicit conversions should exhibit these characteristics as well.

6.1.1 Identity conversion
An identity conversion converts from any type to the same type. This conversion exists only such that an entity
that already has a required type can be said to be convertible to that type.

6.1.2 Implicit numeric conversions
The implicit numeric conversions are:

• From sbyte to short, int , long, float , double, or decimal.

• From byte to short, ushort , int, uint , long, ulong , float, double , or decimal.

• From short to int, long , float, double , or decimal.

• From ushort to int, uint , long, ulong , float, double , or decimal.

• From int to long, float , double, or decimal.

• From uint to long, ulong , float, double , or decimal.

• From long to float, double , or decimal.

• From ulong to float, double , or decimal.

• From char to ushort, int , uint, long , ulong, float , double, or decimal.

• From float to double.

Conversions from int, uint, or long to float and from long to double may cause a loss of precision, but
will never cause a loss of magnitude. The other implicit numeric conversions never lose any information.

C# LANGUAGE REFERENCE

74 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

There are no implicit conversions to the char type. This in particular means that values of the other integral
types do not automatically convert to the char type.

6.1.3 Implicit enumeration conversions
An implicit enumeration conversion permits the decimal-integer-literal 0 to be converted to any enum-type.

6.1.4 Implicit reference conversions
The implicit reference conversions are:

• From any reference-type to object.

• From any class-type S to any class-type T, provided S is derived from T.

• From any class-type S to any interface-type T, provided S implements T.

• From any interface-type S to any interface-type T, provided S is derived from T.

• From an array-type S with an element type SE to an array-type T with an element type TE, provided all of the
following are true:

• S and T differ only in element type. In other words, S and T have the same number of dimensions.

• Both SE and TE are reference-types.

• An implicit reference conversion exists from SE to TE.

• From any array-type to System.Array.

• From any delegate-type to System.Delegate.

• From any array-type or delegate-type to System.ICloneable.

• From the null type to any reference-type.

The implicit reference conversions are those conversions between reference-types that can be proven to always
succeed, and therefore require no checks at run-time.

Reference conversions, implicit or explicit, never change the referential identity of the object being converted.
In other words, while a reference conversion may change the type of a value, it never changes the value itself.

6.1.5 Boxing conversions
A boxing conversion permits any value-type to be implicitly converted to the type object or to any interface-
type implemented by the value-type. Boxing a value of a value-type consists of allocating an object instance and
copying the value-type value into that instance.

Boxing conversions are further described in §4.3.1.

6.1.6 Implicit constant expression conversions
An implicit constant expression conversion permits the following conversions:

• A constant-expression (§7.15) of type int can be converted to type sbyte, byte, short, ushort , uint,
or ulong, provided the value of the constant-expression is within the range of the destination type.

• A constant-expression of type long can be converted to type ulong, provided the value of the constant-
expression is not negative.

Chapter 6 Conversions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 75

6.1.7 User-defined implicit conversions
A user-defined implicit conversion consists of an optional standard implicit conversion, followed by execution
of a user-defined implicit conversion operator, followed by another optional standard implicit conversion. The
exact rules for evaluating user-defined conversions are described in §6.4.3.

6.2 Explicit conversions
The following conversions are classified as explicit conversions:

• All implicit conversions.

• Explicit numeric conversions.

• Explicit enumeration conversions.

• Explicit reference conversions.

• Explicit interface conversions.

• Unboxing conversions.

• User-defined explicit conversions.

Explicit conversions can occur in cast expressions (§7.6.8).

The explicit conversions are conversions that cannot be proved to always succeed, conversions that are known
to possibly lose information, and conversions across domains of types sufficiently different to merit explicit
notation.

The set explicit conversions includes all implicit conversions. This in particular means that redundant cast
expressions are allowed.

6.2.1 Explicit numeric conversions
The explicit numeric conversions are the conversions from a numeric-type to another numeric-type for which an
implicit numeric conversion (§6.1.2) does not already exist:

• From sbyte to byte, ushort , uint, ulong , or char.

• From byte to sbyte and char.

• From short to sbyte, byte , ushort, uint , ulong, or char.

• From ushort to sbyte, byte , short, or char.

• From int to sbyte, byte , short, ushort , uint, ulong , or char.

• From uint to sbyte, byte , short, ushort , int, or char.

• From long to sbyte, byte , short, ushort , int, uint , ulong, or char.

• From ulong to sbyte, byte , short, ushort , int, uint , long, or char.

• From char to sbyte, byte , or short.

• From float to sbyte, byte , short, ushort , int, uint , long, ulong , char, or decimal.

• From double to sbyte, byte , short, ushort , int, uint , long, ulong , char, float , or decimal.

• From decimal to sbyte, byte , short, ushort , int, uint , long, ulong , char, float , or double.

C# LANGUAGE REFERENCE

76 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Because the explicit conversions include all implicit and explicit numeric conversions, it is always possible to
convert from any numeric-type to any other numeric-type using a cast expression (§7.6.8).

The explicit numeric conversions possibly lose information or possibly cause exceptions to be thrown. An
explicit numeric conversion is processed as follows:

• For a conversion from an integral type to another integral type, the processing depends on the overflow
checking context (§7.5.13) in which the conversion takes place:

• In a checked context, the conversion succeeds if the source argument is within the range of the
destination type, but throws an OverflowException if the source argument is outside the range of the
destination type.

• In an unchecked context, the conversion always succeeds, and simply consists of discarding the most
significant bits of the source value.

• For a conversion from float, double , or decimal to an integral type, the source value is rounded towards
zero to the nearest integral value, and this integral value becomes the result of the conversion. If the
resulting integral value is outside the range of the destination type, an OverflowException is thrown.

• For a conversion from double to float, the double value is rounded to the nearest float value. If the
double value is too small to represent as a float, the result becomes positive zero or negative zero. If the
double value is too large to represent as a float, the result becomes positive infinity or negative infinity.
If the double value is NaN, the result is also NaN.

• For a conversion from float or double to decimal, the source value is converted to decimal
representation and rounded to the nearest number after the 28th decimal place if required (§4.1.6). If the
source value is too small to represent as a decimal, the result becomes zero. If the source value is NaN,
infinity, or too large to represent as a decimal, an InvalidCastException is thrown.

• For a conversion from decimal to float or double, the decimal value is rounded to the nearest double
or float value. While this conversion may lose precision, it never causes an exception to be thrown.

6.2.2 Explicit enumeration conversions
The explicit enumeration conversions are:

• From sbyte, byte , short, ushort , int, uint , long, ulong , char, float , double, or decimal to any
enum-type.

• From any enum-type to sbyte, byte, short, ushort , int, uint , long, ulong , char, float , double,
or decimal.

• From any enum-type to any other enum-type.

An explicit enumeration conversion between two types is processed by treating any participating enum-type as
the underlying type of that enum-type, and then performing an implicit or explicit numeric conversion between
the resulting types. For example, given an enum-type E with and underlying type of int, a conversion from E to
byte is processed as an explicit numeric conversion (§6.2.1) from int to byte, and a conversion from byte to
E is processed as an implicit numeric conversion (§6.1.2) from byte to int.

6.2.3 Explicit reference conversions
The explicit reference conversions are:

• From object to any reference-type.

• From any class-type S to any class-type T, provided S is a base class of T.

Chapter 6 Conversions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 77

• From any class-type S to any interface-type T, provided S is not sealed and provided S does not implement
T.

• From any interface-type S to any class-type T, provided T is not sealed or provided T implements S.

• From any interface-type S to any interface-type T, provided S is not derived from T.

• From an array-type S with an element type SE to an array-type T with an element type TE, provided all of the
following are true:

• S and T differ only in element type. In other words, S and T have the same number of dimensions.

• Both SE and TE are reference-types.

• An explicit reference conversion exists from SE to TE.

• From System.Array to any array-type.

• From System.Delegate to any delegate-type.

• From System.ICloneable to any array-type or delegate-type.

The explicit reference conversions are those conversions between reference-types that require run-time checks
to ensure they are correct.

For an explicit reference conversion to succeed at run-time, the value of the source argument must be null or
the actual type of the object referenced by the source argument must be a type that can be converted to the
destination type by an implicit reference conversion (§6.1.4). If an explicit reference conversion fails, an
InvalidCastException is thrown.

Reference conversions, implicit or explicit, never change the referential identity of the object being converted.
In other words, while a reference conversion may change the type of a value, it never changes the value itself.

6.2.4 Unboxing conversions
An unboxing conversion permits an explicit conversion from type object to any value-type or from any
interface-type to any value-type that implements the interface-type. An unboxing operation consists of first
checking that the object instance is a boxed value of the given value-type, and then copying the value out of the
instance.

Unboxing conversions are further described in §4.3.2.

6.2.5 User-defined explicit conversions
A user-defined explicit conversion consists of an optional standard explicit conversion, followed by execution of
a user-defined implicit or explicit conversion operator, followed by another optional standard explicit
conversion. The exact rules for evaluating user-defined conversions are described in §6.4.4.

6.3 Standard conversions
The standard conversions are those pre-defined conversions that can occur as part of a user-defined conversion.

6.3.1 Standard implicit conversions
The following implicit conversions are classified as standard implicit conversions:

• Identity conversions (§6.1.1)

• Implicit numeric conversions (§6.1.2)

• Implicit reference conversions (§6.1.4)

C# LANGUAGE REFERENCE

78 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• Boxing conversions (§6.1.5)

• Implicit constant expression conversions (§6.1.6)

The standard implicit conversions specifically exclude user-defined implicit conversions.

6.3.2 Standard explicit conversions
The standard explicit conversions are all standard implicit conversions plus the subset of the explicit
conversions for which an opposite standard implicit conversion exists. In other words, if a standard implicit
conversion exists from a type A to a type B, then a standard explicit conversion exists from type A to type B and
from type B to type A.

6.4 User-defined conversions
C# allows the pre-defined implicit and explicit conversions to be augmented by user-defined conversions. User-
defined conversions are introduced by declaring conversion operators (§10.9.3) in class and struct types.

6.4.1 Permitted user-defined conversions
C# permits only certain user-defined conversions to be declared. In particular, it is not possible to redefine an
already existing implicit or explicit conversion. A class or struct is permitted to declare a conversion from a
source type S to a target type T only if all of the following are true:

• S and T are different types.

• Either S or T is the class or struct type in which the operator declaration takes place.

• Neither S nor T is object or an interface-type.

• T is not a base class of S, and S is not a base class of T.

The restrictions that apply to user-defined conversions are discussed further in §10.9.3.

6.4.2 Evaluation of user-defined conversions
A user-defined conversion converts a value from its type, called the source type, to another type, called the
target type. Evaluation of a user-defined conversion centers on finding the most specific user-defined conversion
operator for the particular source and target types. This determination is broken into several steps:

• Finding the set of classes and structs from which user-defined conversion operators will be considered. This
set consists of the source type and its base classes and the target type and its base classes (with the implicit
assumptions that only classes and structs can declare user-defined operators, and that non-class types have
no base classes).

• From that set of types, determining which user-defined conversion operators are applicable. For a
conversion operator to be applicable, it must be possible to perform a standard conversion (§6.3) from the
source type to the argument type of the operator, and it must be possible to perform a standard conversion
from the result type of the operator to the target type.

• From the set of applicable user-defined operators, determining which operator is unambiguously the most
specific. In general terms, the most specific operator is the operator whose argument type is “closest” to the
source type and whose result type is “closest” to the target type. The exact rules for establishing the most
specific user-defined conversion operator are defined in the following sections.

Once a most specific user-defined conversion operator has been identified, the actual execution of the user-
defined conversion involves up to three steps:

Chapter 6 Conversions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 79

• First, if required, performing a standard conversion from the source type to the argument type of the user-
defined conversion operator.

• Next, invoking the user-defined conversion operator to perform the conversion.

• Finally, if required, performing a standard conversion from the result type of the user-defined conversion
operator to the target type.

Evaluation of a user-defined conversion never involves more than one user-defined conversion operator. In
other words, a conversion from type S to type T will never first execute a user-defined conversion from S to X
and then execute a user-defined conversion from X to T.

Exact definitions of evaluation of user-defined implicit or explicit conversions are given in the following
sections. The definitions make use of the following terms:

• If a standard implicit conversion (§6.3.1) exists from a type A to a type B, and if neither A nor B are
interface-types, then A is said to be encompassed by B, and B is said to encompass A.

• The most encompassing type in a set of types is the one type that encompasses all other types in the set. If no
single type encompasses all other types, then the set has no most encompassing type. In more intuitive
terms, the most encompassing type is the “largest” type in the set—the one type to which each of the other
types can be implicitly converted.

• The most encompassed type in a set of types is the one type that is encompassed by all other types in the set.
If no single type is encompassed by all other types, then the set has no most encompassed type. In more
intuitive terms, the most encompassed type is the “smallest” type in the set—the one type that can be
implicitly converted to each of the other types.

6.4.3 User-defined implicit conversions
A user-defined implicit conversion from type S to type T is processed as follows:

• Find the set of types, D, from which user-defined conversion operators will be considered. This set consists
of S (if S is a class or struct), the base classes of S (if S is a class), T (if T is a class or struct), and the base
classes of T (if T is a class).

• Find the set of applicable user-defined conversion operators, U. This set consists of the user-defined implicit
conversion operators declared by the classes or structs in D that convert from a type encompassing S to a
type encompassed by T. If U is empty, the conversion is undefined and an error occurs.

• Find the most specific source type, SX, of the operators in U:

• If any of the operators in U convert from S, then SX is S.

• Otherwise, SX is the most encompassed type in the combined set of source types of the operators in U. If
no most encompassed type can be found, then the conversion is ambiguous and an error occurs.

• Find the most specific target type, TX, of the operators in U:

• If any of the operators in U convert to T, then TX is T.

• Otherwise, TX is the most encompassing type in the combined set of target types of the operators in U. If
no most encompassing type can be found, then the conversion is ambiguous and an error occurs.

• If U contains exactly one user-defined conversion operator that converts from SX to TX, then this is the most
specific conversion operator. If no such operator exists, or if more than one such operator exists, then the
conversion is ambiguous and an error occurs. Otherwise, the user-defined conversion is applied:

• If S is not SX, then a standard implicit conversion from S to SX is performed.

C# LANGUAGE REFERENCE

80 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• The most specific user-defined conversion operator is invoked to convert from SX to TX.

• If TX is not T, then a standard implicit conversion from TX to T is performed.

6.4.4 User-defined explicit conversions
A user-defined explicit conversion from type S to type T is processed as follows:

• Find the set of types, D, from which user-defined conversion operators will be considered. This set consists
of S (if S is a class or struct), the base classes of S (if S is a class), T (if T is a class or struct), and the base
classes of T (if T is a class).

• Find the set of applicable user-defined conversion operators, U. This set consists of the user-defined implicit
or explicit conversion operators declared by the classes or structs in D that convert from a type
encompassing or encompassed by S to a type encompassing or encompassed by T. If U is empty, the
conversion is undefined and an error occurs.

• Find the most specific source type, SX, of the operators in U:

• If any of the operators in U convert from S, then SX is S.

• Otherwise, if any of the operators in U convert from types that encompass S, then SX is the most
encompassed type in the combined set of source types of those operators. If no most encompassed type
can be found, then the conversion is ambiguous and an error occurs.

• Otherwise, SX is the most encompassing type in the combined set of source types of the operators in U. If
no most encompassing type can be found, then the conversion is ambiguous and an error occurs.

• Find the most specific target type, TX, of the operators in U:

• If any of the operators in U convert to T, then TX is T.

• Otherwise, if any of the operators in U convert to types that are encompassed by T, then TX is the most
encompassing type in the combined set of source types of those operators. If no most encompassing
type can be found, then the conversion is ambiguous and an error occurs.

• Otherwise, TX is the most encompassed type in the combined set of target types of the operators in U. If
no most encompassed type can be found, then the conversion is ambiguous and an error occurs.

• If U contains exactly one user-defined conversion operator that converts from SX to TX, then this is the most
specific conversion operator. If no such operator exists, or if more than one such operator exists, then the
conversion is ambiguous and an error occurs. Otherwise, the user-defined conversion is applied:

• If S is not SX, then a standard explicit conversion from S to SX is performed.

• The most specific user-defined conversion operator is invoked to convert from SX to TX.

• If TX is not T, then a standard explicit conversion from TX to T is performed.

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 81

7. Expressions

An expression is a sequence of operators and operands that specifies a computation. This chapter defines the
syntax, order of evaluation, and meaning of expressions.

7.1 Expression classifications
An expression is classified as one of the following:

• A value. Every value has an associated type.

• A variable. Every variable has an associated type, namely the declared type of the variable.

• A namespace. An expression with this classification can only appear as the left hand side of a member-
access (§7.5.4). In any other context, an expression classified as a namespace causes an error.

• A type. An expression with this classification can only appear as the left hand side of a member-access
(§7.5.4). In any other context, an expression classified as a type causes an error.

• A method group, which is a set of overloaded methods resulting from a member lookup (§7.3). A method
group may have associated instance expression. When an instance method is invoked, the result of
evaluating the instance expression becomes the instance represented by this (§7.5.7). A method group is
only permitted in an invocation-expression (§7.5.5) or a delegate-creation-expression (§7.5.10.3). In any
other context, an expression classified as a method group causes an error.

• A property access. Every property access has an associated type, namely the type of the property. A
property access may furthermore have an associated instance expression. When an accessor (the get or set
block) of an instance property access is invoked, the result of evaluating the instance expression becomes
the instance represented by this (§7.5.7).

• An event access. Every event access has an associated type, namely the type of the event. An event access
may furthermore have an associated instance expression. An event access may appear as the left hand
operand of the += and -= operators (§7.13.3). In any other context, an expression classified as an event
access causes an error.

• An indexer access. Every indexer access has an associated type, namely the element type of the indexer.
Furthermore, an indexer access has an associated instance expression and an associated argument list. When
an accessor (the get or set block) of an indexer access is invoked, the result of evaluating the instance
expression becomes the instance represented by this (§7.5.7), and the result of evaluating the argument list
becomes the parameter list of the invocation.

• Nothing. This occurs when the expression is an invocation of a method with a return type of void. An
expression classified as nothing is only valid in the context of a statement-expression (§8.6).

The final result of an expression is never a namespace, type, method group, or event access. Rather, as noted
above, these categories of expressions are intermediate constructs that are only permitted in certain contexts.

A property access or indexer access is always reclassified as a value by performing an invocation of the get-
accessor or the set-accessor. The particular accessor is determined by the context of the property or indexer
access: If the access is the target of an assignment, the set-accessor is invoked to assign a new value (§7.13.1).
Otherwise, the get-accessor is invoked to obtain the current value (§7.1.1).

C# LANGUAGE REFERENCE

82 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

7.1.1 Values of expressions
Most of the constructs that involve an expression ultimately require the expression to denote a value. In such
cases, if the actual expression denotes a namespace, a type, a method group, or nothing, an error occurs.
However, if the expression denotes a property access, an indexer access, or a variable, the value of the property,
indexer, or variable is implicitly substituted:

• The value of a variable is simply the value currently stored in the storage location identified by the variable.
A variable must be considered definitely assigned (§5.3) before its value can be obtained, or otherwise a
compile-time error occurs.

• The value of a property access expression is obtained by invoking the get-accessor of the property. If the
property has no get-accessor, an error occurs. Otherwise, a function member invocation (§7.4.3) is
performed, and the result of the invocation becomes the value of the property access expression.

• The value of an indexer access expression is obtained by invoking the get-accessor of the indexer. If the
indexer has no get-accessor, an error occurs. Otherwise, a function member invocation (§7.4.3) is performed
with the argument list associated with the indexer access expression, and the result of the invocation
becomes the value of the indexer access expression.

7.2 Operators
Expressions are constructed from operands and operators. The operators of an expression indicate which
operations to apply to the operands. Examples of operators include +, - , *, / , and new. Examples of operands
include literals, fields, local variables, and expressions.

There are three types of operators:

• Unary operators. The unary operators take one operand and use either prefix notation (such as –x) or postfix
notation (such as x++).

• Binary operators. The binary operators take two operands and all use infix notation (such as x + y).

• Ternary operator. Only one ternary operator, ?:, exists. The ternary operator takes three operands and uses
infix notation (c? x: y).

The order of evaluation of operators in an expression is determined by the precedence and associativity of the
operators (§7.2.1).

Certain operators can be overloaded. Operator overloading permits user-defined operator implementations to be
specified for operations where one or both of the operands are of a user-defined class or struct type (§7.2.2).

7.2.1 Operator precedence and associativity
When an expression contains multiple operators, the precedence of the operators control the order in which the
individual operators are evaluated. For example, the expression x + y * z is evaluated as x + (y * z) because
the * operator has higher precedence than the + operator. The precedence of an operator is established by the
definition of its associated grammar production. For example, an additive-expression consists of a sequence of
multiplicative-expressions separated by + or - operators, thus giving the + and - operators lower precedence
than the *, /, and % operators.

The following table summarizes all operators in order of precedence from highest to lowest:

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 83

Section Category Operators

7.5 Primary (x) x.y f(x) a[x] x++ x-- new

typeof sizeof checked unchecked

7.6 Unary + - ! ~ ++x --x (T)x

7.7 Multiplicative * / %

7.7 Additive + -

7.8 Shift << >>

7.9 Relational < > <= >= is

7.9 Equality == !=

7.10 Logical AND &

7.10 Logical XOR ^

7.10 Logical OR |

7.11 Conditional AND &&

7.11 Conditional OR ||

7.12 Conditional ?:

7.13 Assignment = *= /= %= += -= <<= >>= &= ^= |=

When an operand occurs between two operators with the same precedence, the associativity of the operators
controls the order in which the operations are performed:

• Except for the assignment operators, all binary operators are left-associative, meaning that operations are
performed from left to right. For example, x + y + z is evaluated as (x + y) + z.

• The assignment operators and the conditional operator (?:) are right-associative, meaning that operations
are performed from right to left. For example, x = y = z is evaluated as x = (y = z).

Precedence and associativity can be controlled using parentheses. For example, x + y * z first multiplies y by z
and then adds the result to x, but (x + y) * z first adds x and y and then multiplies the result by z.

7.2.2 Operator overloading
All unary and binary operators have predefined implementations that are automatically available in any
expression. In addition to the predefined implementations, user-defined implementations can be introduced by
including operator declarations in classes and structs (§10.9). User-defined operator implementations always
take precedence over predefined operator implementations: Only when no applicable user-defined operator
implementations exist will the predefined operator implementations be considered.

The overloadable unary operators are:

+ - ! ~ ++ -- true false

The overloadable binary operators are:

+ - * / % & | ^ << >> == != > < >= <=

Only the operators listed above can be overloaded. In particular, it is not possible to overload member access,
method invocation, or the =, && , ||, ?:, new , typeof, sizeof , and is operators.

C# LANGUAGE REFERENCE

84 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

When an binary operator is overloaded, the corresponding assignment operator is also implicitly overloaded. For
example, an overload of operator * is also an overload of operator *=. This is described further in §7.13. Note
that the assignment operator itself (=) cannot be overloaded. An assignment always performs a simple bit-wise
copy of a value into a variable.

Cast operations, such as (T)x, are overloaded by providing user-defined conversions (§6.4).

Element access, such as a[x], is not considered an overloadable operator. Instead, user-defined indexing is
supported through indexers (§10.8).

In expressions, operators are referenced using operator notation, and in declarations, operators are referenced
using functional notation. The following table shows the relationship between operator and functional notations
for unary and binary operators. In the first entry, op denotes any overloadable unary operator. In the second
entry, op denotes the unary ++ and -- operators. In the third entry, op denotes any overloadable binary operator.

Operator notation Functional notation

op x operator op(x)

x op operator op(x)

x op y operator op(x, y)

User-defined operator declarations always require at least one of the parameters to be of the class or struct type
that contains the operator declaration. Thus, it is not possible for a user-defined operator to have the same
signature as a predefined operator.

User-defined operator declarations cannot modify the syntax, precedence, or associativity of an operator. For
example, the * operator is always a binary operator, always has the precedence level specified in §7.2.1, and is
always left-associative.

While it is possible for a user-defined operator to perform any computation it pleases, implementations that
produce results other than those that are intuitively expected are strongly discouraged. For example, an
implementation of operator == should compare the two operands for equality and return an appropriate result.

The descriptions of individual operators in §7.5 through §7.13 specify the predefined implementations of the
operators and any additional rules that apply to each operator. The descriptions make use of the terms unary
operator overload resolution, binary operator overload resolution, and numeric promotion, definitions of which
are found in the following sections.

7.2.3 Unary operator overload resolution
An operation of the form op x or x op, where op is an overloadable unary operator, and x is an expression of
type X, is processed as follows:

• The set of candidate user-defined operators provided by X for the operation operator op(x) is determined
using the rules of §7.2.5.

• If the set of candidate user-defined operators is not empty, then this becomes the set of candidate operators
for the operation. Otherwise, the predefined unary operator op implementations become the set of
candidate operators for the operation. The predefined implementations of a given operator are specified in
the description of the operator (§7.5 and §7.6).

• The overload resolution rules of §7.4.2 are applied to the set of candidate operators to select the best
operator with respect to the argument list (x) , and this operator becomes the result of the overload
resolution process. If overload resolution fails to select a single best operator, an error occurs.

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 85

7.2.4 Binary operator overload resolution
An operation of the form x op y, where op is an overloadable binary operator, x is an expression of type X, and
y is an expression of type Y, is processed as follows:

• The set of candidate user-defined operators provided by X and Y for the operation operator op(x, y) is
determined. The set consists of the union of the candidate operators provided by X and the candidate
operators provided by Y, each determined using the rules of §7.2.5. If X and Y are the same type, or if X and
Y are derived from a common base type, then shared candidate operators only occur in the combined set
once.

• If the set of candidate user-defined operators is not empty, then this becomes the set of candidate operators
for the operation. Otherwise, the predefined binary operator op implementations become the set of
candidate operators for the operation. The predefined implementations of a given operator are specified in
the description of the operator (§7.7 through §7.13).

• The overload resolution rules of §7.4.2 are applied to the set of candidate operators to select the best
operator with respect to the argument list (x, y), and this operator becomes the result of the overload
resolution process. If overload resolution fails to select a single best operator, an error occurs.

7.2.5 Candidate user-defined operators
Given a type T and an operation operator op(A), where op is an overloadable operator and A is an argument
list, the set of candidate user-defined operators provided by T for operator op(A) is determined as follows:

• For all operator op declarations in T, if at least one operator is applicable (§7.4.2.1) with respect to the
argument list A, then the set of candidate operators consists of all applicable operator op declarations in T.

• Otherwise, if T is object, the set of candidate operators is empty.

• Otherwise, the set of candidate operators provided by T is the set of candidate operators provided by the
direct base class of T.

7.2.6 Numeric promotions
Numeric promotion consists of automatically performing certain implicit conversions of the operands of the
predefined unary and binary numeric operators. Numeric promotion is not a distinct mechanism, but rather an
effect of applying overload resolution to the predefined operators. Numeric promotion specifically does not
affect evaluation of user-defined operators, although user-defined operators can be implemented to exhibit
similar effects.

As an example of numeric promotion, consider the predefined implementations of the binary * operator:

int operator *(int x, int y);
uint operator *(uint x, uint y);
long operator *(long x, long y);
ulong operator *(ulong x, ulong y);
float operator *(float x, float y);
double operator *(double x, double y);
decimal operator *(decimal x, decimal y);

When overload resolution rules (§7.4.2) are applied to this set of operators, the effect is to select the first of the
operators for which implicit conversions exist from the operand types. For example, for the operation b * s,
where b is a byte and s is a short, overload resolution selects operator *(int, int) as the best operator.
Thus, the effect is that b and s are converted to int, and the type of the result is int. Likewise, for the
operation i * d, where i is an int and d is a double, overload resolution selects operator *(double,
double) as the best operator.

C# LANGUAGE REFERENCE

86 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

7.2.6.1 Unary numeric promotions
Unary numeric promotion occurs for the operands of the predefined +, –, and ~ unary operators. Unary numeric
promotion simply consists of converting operands of type sbyte, byte, short, ushort , or char to type int.
Additionally, for the unary – operator, unary numeric promotion converts operands of type uint to type long.

7.2.6.2 Binary numeric promotions
Binary numeric promotion occurs for the operands of the predefined +, –, *, / , %, & , |, ^, == , !=, > , <, >=, and
<= binary operators. Binary numeric promotion implicitly converts both operands to a common type which, in
case of the non-relational operators, also becomes the result type of the operation. Binary numeric promotion
consists of applying the following rules, in the order they appear here:

• If either operand is of type decimal, the other operand is converted to type decimal, or an error occurs if
the other operand is of type float or double.

• Otherwise, if either operand is of type double, the other operand is converted to type double.

• Otherwise, if either operand is of type float, the other operand is converted to type float.

• Otherwise, if either operand is of type ulong, the other operand is converted to type ulong, or an error
occurs if the other operand is of type sbyte, short, int, or long.

• Otherwise, if either operand is of type long, the other operand is converted to type long.

• Otherwise, if either operand is of type uint and the other operand is of type sbyte, short, or int , both
operands are converted to type long.

• Otherwise, if either operand is of type uint, the other operand is converted to type uint.

• Otherwise, both operands are converted to type int.

Note that the first rule disallows any operations that mix the decimal type with the double and float types.
The rule follows from the fact that there are no implicit conversions between the decimal type and the double
and float types.

Also note that it is not possible for an operand to be of type ulong when the other operand is of a signed
integral type. The reason is that no integral type exists that can represent the full range of ulong as well as the
signed integral types.

In both of the above cases, a cast expression can be used to explicitly convert one operand to a type that is
compatible with the other operand.

In the example

decimal AddPercent(decimal x, double percent) {
return x * (1.0 + percent / 100.0);

}

a compile-time error occurs because a decimal cannot be multiplied by a double. The error is resolved by
explicitly converting the second operand to decimal:

decimal AddPercent(decimal x, double percent) {
return x * (decimal)(1.0 + percent / 100.0);

}

7.3 Member lookup
A member lookup is the process whereby the meaning of a name in the context of a type is determined. A
member lookup may occur as part of evaluating a simple-name (§7.5.2) or a member-access (§7.5.4) in an
expression.

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 87

A member lookup of a name N in a type T is processed as follows:

• First, the set of all accessible (§3.3) members named N declared in T and the base types (§7.3.1) of T is
constructed. Declarations that include an override modifier are excluded from the set. If no members
named N exist and are accessible, then the lookup produces no match, and the following steps are not
evaluated.

• Next, members that are hidden by other members are removed from the set. For every member S.M in the
set, where S in the type in which the member M is declared, the following rules are applied:

• If M is a constant, field, property, event, type, or enumeration member, then all members declared in a
base type of S are removed from the set.

• If M is a method, then all non-method members declared in a base type of S are removed from the set,
and all methods with the same signature as M declared in a base type of S are removed from the set.

• Finally, having removed hidden members, the result of the lookup is determined:

• If the set consists of a single non-method member, then this member is the result of the lookup.

• Otherwise, if the set contains only methods, then this group of methods is the result of the lookup.

• Otherwise, the lookup is ambiguous, and a compile-time error occurs (this situation can only occur for a
member lookup in an interface that has multiple direct base interfaces).

For member lookups in types other than interfaces, and member lookups in interfaces that are strictly single-
inheritance (each interface in the inheritance chain has exactly zero or one direct base interface), the effect of the
lookup rules is simply that derived members hide base members with the same name or signature. Such single-
inheritance lookups are never ambiguous. The ambiguities that can possibly arise from member lookups in
multiple-inheritance interfaces are described in §13.2.5.

7.3.1 Base types
For purposes of member lookup, a type T is considered to have the following base types:

• If T is object, then T has no base type.

• If T is a value-type, the base type of T is the class type object.

• If T is a class-type, the base types of T are the base classes of T, including the class type object.

• If T is an interface-type, the base types of T are the base interfaces of T and the class type object.

• If T is an array-type, the base types of T are the class types System.Array and object.

• If T is a delegate-type, the base types of T are the class types System.Delegate and object.

7.4 Function members
Function members are members that contain executable statements. Function members are always members of
types and cannot be members of namespaces. C# defines the following five categories of function members:

• Constructors

• Methods

• Properties

• Indexers

• User-defined operators

C# LANGUAGE REFERENCE

88 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The statements contained in function members are executed through function member invocations. The actual
syntax for writing a function member invocation depends on the particular function member category. However,
all function member invocations are expressions, allow arguments to be passed to the function member, and
allow the function member to compute and return a result.

The argument list (§7.4.1) of a function member invocation provides actual values or variable references for the
parameters of the function member.

Invocations of constructors, methods, indexers, and operators employ overload resolution to determine which of
a candidate set of function members to invoke. This process is described in §7.4.2.

Once a particular function member has been identified at compile-time, possibly through overload resolution,
the actual run-time process of invoking the function member is described in §7.4.3.

The following table summarizes the processing that takes place in constructs involving the five categories of
function members. In the table, e, x, y, and value indicate expressions classified as variables or values, T
indicates an expression classified as a type, F is the simple name of a method, and P is the simple name of a
property.

Construct Example Description

Constructor
invocation

new T(x, y) Overload resolution is applied to select the best constructor in
the class or struct T. The constructor is invoked with the
argument list (x, y).

F(x, y) Overload resolution is applied to select the best method F in the
containing class or struct. The method is invoked with the
argument list (x, y). If the method is not static, the instance
expression is this.

T.F(x, y) Overload resolution is applied to select the best method F in the
class or struct T. An error occurs if the method is not static.
The method is invoked with the argument list (x, y).

Method
invocation

e.F(x, y) Overload resolution is applied to select the best method F in the
class, struct, or interface given by the type of e. An error occurs
if the method is static. The method is invoked with the
instance expression e and the argument list (x, y).

P The get accessor of the property P in the containing class or
struct is invoked. An error occurs if P is write-only. If P is not
static, the instance expression is this.

P = value The set accessor of the property P in the containing class or
struct is invoked with the argument list (value). An error
occurs if P is read-only. If P is not static, the instance
expression is this.

T.P The get accessor of the property P in the class or struct T is
invoked. An error occurs if P is not static or if P is write-
only.

Property
access

T.P = value The set accessor of the property P in the class or struct T is
invoked with the argument list (value). An error occurs if P
is not static or if P is read-only.

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 89

Construct Example Description
e.P The get accessor of the property P in the class, struct, or

interface given by the type of e is invoked with the instance
expression e. An error occurs if P is static or if P is write-
only.

e.P = value The set accessor of the property P in the class, struct, or
interface given by the type of e is invoked with the instance
expression e and the argument list (value). An error occurs if
P is static or if P is read-only.

e[x, y] Overload resolution is applied to select the best indexer in the
class, struct, or interface given by the type of e. The get
accessor of the indexer is invoked with the instance expression
e and the argument list (x, y). An error occurs if the indexer
is write-only.

Indexer
access

e[x, y] = value Overload resolution is applied to select the best indexer in the
class, struct, or interface given by the type of e. The set
accessor of the indexer is invoked with the instance expression
e and the argument list (x, y, value). An error occurs if the
indexer is read-only.

-x Overload resolution is applied to select the best unary operator
in the class or struct given by the type of x. The selected
operator is invoked with the argument list (x).

Operator
invocation

x + y Overload resolution is applied to select the best binary operator
in the classes or structs given by the types of x and y. The
selected operator is invoked with the argument list (x, y).

7.4.1 Argument lists
Every function member invocation includes an argument list which provides actual values or variable references
for the parameters of the function member. The syntax for specifying the argument list of a function member
invocation depends on the function member category:

• For constructors, methods, and delegates, the arguments are specified as an argument-list, as described
below.

• For properties, the argument list is empty when invoking the get accessor, and consists of the expression
specified as the right operand of the assignment operator when invoking the set accessor.

• For indexers, the argument list consists of the expressions specified between the square brackets in the
indexer access. When invoking the set accessor, the argument list additionally includes the expression
specified as the right operand of the assignment operator.

• For user-defined operators, the argument list consists of the single operand of the unary operator or the two
operands of the binary operator.

The arguments of properties, indexers, and user-defined operators are always passed as value parameters
(§10.5.1.1). Reference and output parameters are not supported for these categories of function members.

The arguments of a constructor, method, or delegate invocation are specified as an argument-list:

C# LANGUAGE REFERENCE

90 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

argument-list:
argument
argument-list , argument

argument:
expression
ref variable-reference
out variable-reference

An argument-list consists of zero or more arguments, separated by commas. Each argument can take one of the
following forms:

• An expression, indicating that the argument is passed as a value parameter (§10.5.1.1).

• The keyword ref followed by a variable-reference (§5.4), indicating that the argument is passed as a
reference parameter (§10.5.1.2). A variable must be definitely assigned (§5.3) before it can be passed as a
reference parameter.

• The keyword out followed by a variable-reference (§5.4), indicating that the argument is passed as an
output parameter (§10.5.1.3). A variable is considered definitely assigned (§5.3) following a function
member invocation in which the variable is passed as an output parameter.

During the run-time processing of a function member invocation (§7.4.3), the expressions or variable references
of an argument list are evaluated in order, from left to right, as follows:

• For a value parameter, the argument expression is evaluated and an implicit conversion (§6.1) to the
corresponding parameter type is performed. The resulting value becomes the initial value of the value
parameter in the function member invocation.

• For a reference or output parameter, the variable reference is evaluated and the resulting storage location
becomes the storage location represented by the parameter in the function member invocation. If the
variable reference given as a reference or output parameter is an array element of a reference-type, a run-
time check is performed to ensure that element type of the array is identical to the type of the parameter. If
this check fails, an ArrayTypeMismatchException is thrown.

The expressions of an argument list are always evaluated in the order they are written. Thus, the example

class Test
{

static void F(int x, int y, int z) {
Console.WriteLine("x = {0}, y = {1}, z = {2}", x, y, z);

}

static void Main() {
int i = 0;
F(i++, i++, i++);

}
}

produces the output

x = 0, y = 1, z = 2

The array co-variance rules (§12.5) permit a value of an array type A[] to be a reference to an instance of an
array type B[], provided an implicit reference conversion exists from B to A. Because of these rules, when an
array element of a reference-type is passed as a reference or output parameter, a run-time check is required to
ensure that the actual element type of the array is identical to that of the parameter. In the example

class Test
{

static void F(ref object x) {...}

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 91

static void Main() {
object[] a = new object[10];
object[] b = new string[10];
F(ref a[0]); // Ok
F(ref b[1]); // ArrayTypeMismatchException

}
}

the second invocation of F causes an ArrayTypeMismatchException to be thrown because the actual
element type of b is string and not object.

7.4.2 Overload resolution
Overload resolution is a mechanism for selecting the best function member to invoke given an argument list and
a set of candidate function members. Overload resolution selects the function member to invoke in the following
distinct contexts within C#:

• Invocation of a method named in an invocation-expression (§7.5.5).

• Invocation of a constructor named in an object-creation-expression (§7.5.10.1).

• Invocation of an indexer accessor through an element-access (§7.5.6).

• Invocation of a predefined or user-defined operator referenced in an expression (§7.2.3 and §7.2.4).

Each of these contexts defines the set of candidate function members and the list of arguments in its own unique
way. However, once the candidate function members and the argument list have been identified, the selection of
the best function member is the same in all cases:

• First, the set of candidate function members is reduced to those function members that are applicable with
respect to the given argument list (§7.4.2.1). If this reduced set is empty, an error occurs.

• Then, given the set of applicable candidate function members, the best function member in that set is
located. If the set contains only one function member, then that function member is the best function
member. Otherwise, the best function member is the one function member that is better than all other
function members with respect to the given argument list, provided that each function member is compared
to all other function members using the rules in §7.4.2.2. If there is not exactly one function member that is
better than all other function members, then the function member invocation is ambiguous and an error
occurs.

The following sections define the exact meanings of the terms applicable function member and better function
member.

7.4.2.1 Applicable function member
A function member is said to be an applicable function member with respect to an argument list A when all of
the following are true:

• The number of arguments in A is identical to the number of parameters in the function member declaration.

• For each argument in A, the parameter passing mode of the argument is identical to the parameter passing
mode of the corresponding parameter, and

• for an input parameter, an implicit conversion (§6.1) exists from the type of the argument to the type of
the corresponding parameter, or

• for a ref or out parameter, the type of the argument is identical to the type of the corresponding
parameter.

C# LANGUAGE REFERENCE

92 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

7.4.2.2 Better function member
Given an argument list A with a set of argument types A1, A2, ..., AN and two applicable function members MP and
MQ with parameter types P1, P2, ..., PN and Q1, Q2, ..., QN, MP is defined to be a better function member than MQ if

• for each argument, the implicit conversion from AX to PX is not worse than the implicit conversion from AX to
QX, and

• for at least one argument, the conversion from AX to PX is better than the conversion from AX to QX.

7.4.2.3 Better conversion
Given an implicit conversion C1 that converts from a type S to a type T1, and an implicit conversion C2 that
converts from a type S to a type T2, the better conversion of the two conversions is determined as follows:

• If T1 and T2 are the same type, neither conversion is better.

• If S is T1, C1 is the better conversion.

• If S is T2, C2 is the better conversion.

• If an implicit conversion from T1 to T2 exists, and no implicit conversion from T2 to T1 exists, C1 is the better
conversion.

• If an implicit conversion from T2 to T1 exists, and no implicit conversion from T1 to T2 exists, C2 is the better
conversion.

• If T1 is sbyte and T2 is byte, ushort, uint , or ulong, C1 is the better conversion.

• If T2 is sbyte and T1 is byte, ushort, uint , or ulong, C2 is the better conversion.

• If T1 is short and T2 is ushort, uint, or ulong , C1 is the better conversion.

• If T2 is short and T1 is ushort, uint, or ulong , C2 is the better conversion.

• If T1 is int and T2 is uint, or ulong, C1 is the better conversion.

• If T2 is int and T1 is uint, or ulong, C2 is the better conversion.

• If T1 is long and T2 is ulong, C1 is the better conversion.

• If T2 is long and T1 is ulong, C2 is the better conversion.

• Otherwise, neither conversion is better.

If an implicit conversion C1 is defined by these rules to be a better conversion than an implicit conversion C2,
then it is also the case that C2 is a worse conversion than C1.

7.4.3 Function member invocation
This section describes the process that takes place at run-time to invoke a particular function member. It is
assumed that a compile-time process has already determined the particular member to invoke, possibly by
applying overload resolution to a set of candidate function members.

For purposes of describing the invocation process, function members are divided into two categories:

• Static function members. These are static methods, constructors, static property accessors, and user-defined
operators. Static function members are always non-virtual.

• Instance function members. These are instance methods, instance property accessors, and indexer accessors.
Instance function members are either non-virtual or virtual, and are always invoked on a particular instance.

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 93

The instance is computed by an instance expression, and it becomes accessible within the function member
as this (§7.5.7).

The run-time processing of a function member invocation consists of the following steps, where M is the
function member and, if M is an instance member, E is the instance expression:

• If M is a static function member:

• The argument list is evaluated as described in §7.4.1.

• M is invoked.

• If M is an instance function member declared in a value-type:

• E is evaluated. If this evaluation causes an exception, then no further steps are executed.

• If E is not classified as a variable, then a temporary local variable of E’s type is created and the value of
E is assigned to that variable. E is then reclassified as a reference to that temporary local variable. The
temporary variable is accessible as this within M, but not in any other way. Thus, only when E is a true
variable is it possible for the caller to observe the changes that M makes to this.

• The argument list is evaluated as described in §7.4.1.

• M is invoked. The variable referenced by E becomes the variable referenced by this.

• If M is an instance function member declared in a reference-type:

• E is evaluated. If this evaluation causes an exception, then no further steps are executed.

• The argument list is evaluated as described in §7.4.1.

• If the type of E is a value-type, a boxing conversion (§4.3.1) is performed to convert E to type object,
and E is considered to be of type object in the following steps.

• The value of E is checked to be valid. If the value of E is null, a NullReferenceException is
thrown and no further steps are executed.

• The function member implementation to invoke is determined: If M is a non-virtual function member,
then M is the function member implementation to invoke. Otherwise, M is a virtual function member and
the function member implementation to invoke is determined through virtual function member lookup
(§7.4.4) or interface function member lookup (§7.4.5).

• The function member implementation determined in the step above is invoked. The object referenced by
E becomes the object referenced by this.

7.4.3.1 Invocations on boxed instances
A function member implemented in a value-type can be invoked through a boxed instance of that value-type in
the following situations:

• When the function member is an override of a method inherited from type object and is invoked
through an instance expression of type object.

• When the function member is an implementation of an interface function member and is invoked through an
instance expression of an interface-type.

• When the function member is invoked through a delegate.

In these situations, the boxed instance is considered to contain a variable of the value-type, and this variable
becomes the variable referenced by this within the function member invocation. This in particular means that

C# LANGUAGE REFERENCE

94 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

when a function member is invoked on a boxed instance, it is possible for the function member to modify the
value contained in the boxed instance.

7.4.4 Virtual function member lookup

7.4.5 Interface function member lookup

7.5 Primary expressions
primary-expression:

literal
simple-name
parenthesized-expression
member-access
invocation-expression
element-access
this-access
base-access
post-increment-expression
post-decrement-expression
new-expression
typeof-expression
sizeof-expression
checked-expression
unchecked-expression

7.5.1 Literals
A primary-expression that consists of a literal (§2.5.3) is classified as a value. The type of the value depends on
the literal as follows:

• A boolean-literal is of type bool. There are two possible boolean-literals, true and false.

• An integer-literal is of type int, uint, long, or ulong, as determined by the value of the literal and by the
presence or absence of a type suffix (§2.5.3.2).

• A real-literal is of type float, double, or decimal , as determined by the presence or absence of a type
suffix (§2.5.3.3).

• A character-literal is of type char.

• A string-literal is of type string.

• The null-literal is of the null type.

7.5.2 Simple names
An simple-name consists of a single identifier.

simple-name:
identifier

A simple-name is evaluated and classified as follows:

• If the simple-name appears within a block and if the block contains a local variable or parameter with the
given name, then the simple-name refers to that local variable or parameter and is classified as a variable.

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 95

• Otherwise, for each type T, starting with the immediately enclosing class, struct, or enumeration declaration
and continuing with each enclosing outer class or struct declaration (if any), if a member lookup of the
simple-name in T produces a match:

• If T is the immediately enclosing class or struct type and the lookup identifies one or more methods, the
result is a method group with an associated instance expression of this.

• If T is the immediately enclosing class or struct type, if the lookup identifies an instance member, and if
the reference occurs within the block of a constructor, an instance method, or an instance accessor, the
result is exactly the same as a member access (§7.5.4) of the form this.E, where E is the simple-name.

• Otherwise, the result is exactly the same as a member access (§7.5.4) of the form T.E, where E is the
simple-name. In this case, it is an error for the simple-name to refer to an instance member.

• Otherwise, starting with the namespace declaration in which the simple-name occurs (if any), continuing
with each enclosing namespace declaration (if any), and ending with the global namespace, the following
steps are evaluated until an entity is located:

• If the namespace contains a namespace member with the given name, then the simple-name refers to
that member and, depending on the member, is classified as a namespace or a type.

• Otherwise, if the namespace declaration contains a using-alias-directive that associates the given name
with an imported namespace or type, then the simple-name refers to that namespace or type.

• Otherwise, if the namespaces imported by the using-namespace-directives of the namespace declaration
contain exactly one type with the given name, then the simple-name refers to that type.

• Otherwise, if the namespaces imported by the using-namespace-directives of the namespace declaration
contain more than one type with the given name, then the simple-name is ambiguous and an error
occurs.

• Otherwise, the name given by the simple-name is undefined and an error occurs.

7.5.2.1 Invariant meaning in blocks
For each occurrence of a given identifier as a simple-name in an expression, every other occurrence of the same
identifier as a simple-name in an expression within the immediately enclosing block (§8.2) or switch-block
(§8.7.2) must refer to the same entity. This rule ensures that the meaning of an name in the context of an
expression is always the same within a block.

The example

class Test
{

double x;

void F(bool b) {
x = 1.0;
if (b) {

int x = 1;
}

}
}

is in error because x refers to different entities within the outer block (the extent of which includes the nested
block in the if statement). In contrast, the example

class Test
{

double x;

C# LANGUAGE REFERENCE

96 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

void F(bool b) {
if (b) {

x = 1.0;
}
else {

int x = 1;
}

}
}

is permitted because the name x is never used in the outer block.

Note that the rule of invariant meaning applies only to simple names. It is perfectly valid for the same identifier
to have one meaning as a simple name and another meaning as right operand of a member access (§7.5.4). For
example:

struct Point
{

int x, y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}
}

The example above illustrates a common pattern of using the names of fields as parameter names in a
constructor. In the example, the simple names x and y refer to the parameters, but that does not prevent the
member access expressions this.x and this.y from accessing the fields.

7.5.3 Parenthesized expressions
A parenthesized-expression consists of an expression enclosed in parentheses.

parenthesized-expression:
(expression)

A parenthesized-expression is evaluated by evaluating the expression within the parentheses. If the expression
within the parentheses denotes a namespace, type, or method group, an error occurs. Otherwise, the result of the
parenthesized-expression is the result of the evaluation of the contained expression.

7.5.4 Member access
A member-access consists of a primary-expression or a predefined-type, followed by a “.” token, followed by
an identifier.

member-access:
primary-expression . identifier
predefined-type . identifier

predefined-type: one of
bool byte char decimal double float int long
object sbyte short string uint ulong ushort

A member-access of the form E.I, where E is a primary-expression or a predefined-type and I is an identifier,
is evaluated and classified as follows:

• If E is a namespace and I is the name of an accessible member of that namespace, then the result is that
member and, depending on the member, is classified as a namespace or a type.

• If E is a predefined-type or a primary-expression classified as a type, and a member lookup (§7.3) of I in E
produces a match, then E.I is evaluated and classified as follows:

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 97

• If I identifies a type, then the result is that type.

• If I identifies one or more methods, then the result is a method group with no associated instance
expression.

• If I identifies a static property, then the result is a property access with no associated instance
expression.

• If I identifies a static field:

• If the field is readonly and the reference occurs outside the static constructor of the class or struct
in which the field is declared, then the result is a value, namely the value of the static field I in E.

• Otherwise, the result is a variable, namely the static field I in E.

• If I identifies a static event:

• If the reference occurs within the class or struct in which the event is declared, then E.I is
processed exactly as if I was a static field or property.

• Otherwise, the result is an event access with no associated instance expression.

• If I identifies a constant, then the result is a value, namely the value of that constant.

• If I identifies an enumeration member, then the result is a value, namely the value of that enumeration
member.

• Otherwise, E.I is an invalid member reference, and an error occurs.

• If E is a property access, indexer access, variable, or value, the type of which is T, and a member lookup
(§7.3) of I in T produces a match, then E.I is evaluated and classified as follows:

• First, if E is a property or indexer access, then the value of the property or indexer access is obtained
(§7.1.1) and E is reclassified as a value.

• If I identifies one or more methods, then the result is a method group with an associated instance
expression of E.

• If I identifies an instance property, then the result is a property access with an associated instance
expression of E.

• If T is a class-type and I identifies an instance field of that class-type:

• If the value of E is null, then a NullReferenceException is thrown.

• Otherwise, if the field is readonly and the reference occurs outside an instance constructor of the
class in which the field is declared, then the result is a value, namely the value of the field I in the
object referenced by E.

• Otherwise, the result is a variable, namely the field I in the object referenced by E.

• If T is a struct-type and I identifies an instance field of that struct-type:

• If E is a value, or if the field is readonly and the reference occurs outside an instance constructor
of the struct in which the field is declared, then the result is a value, namely the value of the field I
in the struct instance given by E.

• Otherwise, the result is a variable, namely the field I in the struct instance given by E.

• If I identifies an instance event:

C# LANGUAGE REFERENCE

98 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• If the reference occurs within the class or struct in which the event is declared, then E.I is
processed exactly as if I was an instance field or property.

• Otherwise, the result is an event access with an associated instance expression of E.

• Otherwise, E.I is an invalid member reference, and an error occurs.

7.5.4.1 Identical simple names and type names
In a member access of the form E.I, if E is a single identifier, and if the meaning of E as a simple-name (§7.5.2)
is a constant, field, property, local variable, or parameter with the same type as the meaning of E as a type-name
(§3.6), then both possible meanings of E are permitted. The two possible meanings of E.I are never ambiguous,
since I must necessarily be a member of the type E in both cases. In other words, the rule simply permits access
to the static members of E where an error would have otherwise occurred. For example:

struct Color
{

public static readonly Color White = new Color(...);
public static readonly Color Black = new Color(...);

public Color Complement() {...}
}

class A
{

public Color Color; // Field Color of type Color

void F() {
Color = Color.Black; // References Color.Black static member
Color = Color.Complement(); // Invokes Complement() on Color field

}

static void G() {
Color c = Color.White; // References Color.White static member

}
}

Within the A class, those occurrences of the Color identifier that reference the Color type are underlined, and
those that reference the Color field are not underlined.

7.5.5 Invocation expressions
An invocation-expression is used to invoke a method.

invocation-expression:
primary-expression (argument-listopt)

The primary-expression of an invocation-expression must be a method group or a value of a delegate-type. If the
primary-expression is a method group, the invocation-expression is a method invocation (§7.5.5.1). If the
primary-expression is a value of a delegate-type, the invocation-expression is a delegate invocation (§7.5.5.2). If
the primary-expression is neither a method group nor a value of a delegate-type, an error occurs.

The optional argument-list (§7.4.1) provides values or variable references for the parameters of the method.

The result of evaluating an invocation-expression is classified as follows:

• If the invocation-expression invokes a method or delegate that returns void, the result is nothing. An
expression that is classified as nothing cannot be an operand of any operator, and is permitted only in the
context of a statement-expression (§8.6).

• Otherwise, the result is a value of the type returned by the method or delegate.

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 99

7.5.5.1 Method invocations
For a method invocation, the primary-expression of the invocation-expression must be a method group. The
method group identifies the one method to invoke or the set of overloaded methods from which to choose a
specific method to invoke. In the latter case, determination of the specific method to invoke is based on the
context provided by the types of the arguments in the argument-list.

The compile-time processing of a method invocation of the form M(A), where M is a method group and A is an
optional argument-list, consists of the following steps:

• The set of candidate methods for the method invocation is constructed. Starting with the set of methods
associated with M, which were found by a previous member lookup (§7.3), the set is reduced to those
methods that are applicable with respect to the argument list A. The set reduction consists of applying the
following rules to each method T.N in the set, where T is the type in which the method N is declared:

• If N is not applicable with respect to A (§7.4.2.1), then N is removed from the set.

• If N is applicable with respect to A (§7.4.2.1), then all methods declared in a base type of T are removed
from the set.

• If the resulting set of candidate methods is empty, then no applicable methods exist, and an error occurs. If
the candidate methods are not all declared in the same type, the method invocation is ambiguous, and an
error occurs (this latter situation can only occur for an invocation of a method in an interface that has
multiple direct base interfaces, as described in §13.2.5).

• The best method of the set of candidate methods is identified using the overload resolution rules of §7.4.2. If
a single best method cannot be identified, the method invocation is ambiguous, and an error occurs.

• Given a best method, the invocation of the method is validated in the context of the method group: If the
best method is a static method, the method group must have resulted from a simple-name or a member-
access through a type. If the best method is an instance method, the method group must have resulted from a
simple-name, a member-access through a variable or value, or a base-access. If neither of these
requirements are true, a compile-time error occurs.

Once a method has been selected and validated at compile-time by the above steps, the actual run-time
invocation is processed according to the rules of function member invocation described in §7.4.3.

The intuitive effect of the resolution rules described above is as follows: To locate the particular method
invoked by a method invocation, start with the type indicated by the method invocation and proceed up the
inheritance chain until at least one applicable, accessible, non-override method declaration is found. Then
perform overload resolution on the set of applicable, accessible, non-override methods declared in that type and
invoke the method thus selected.

7.5.5.2 Delegate invocations
For a delegate invocation, the primary-expression of the invocation-expression must be a value of a delegate-
type. Furthermore, considering the delegate-type to be a function member with the same parameter list as the
delegate-type, the delegate-type must be applicable (§7.4.2.1) with respect to the argument-list of the
invocation-expression.

The run-time processing of a delegate invocation of the form D(A), where D is a primary-expression of a
delegate-type and A is an optional argument-list, consists of the following steps:

• D is evaluated. If this evaluation causes an exception, no further steps are executed.

• The value of D is checked to be valid. If the value of D is null, a NullReferenceException is thrown
and no further steps are executed.

C# LANGUAGE REFERENCE

100 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• Otherwise, D is reference to a delegate instance. A function member invocation (§7.4.3) is performed on the
method referenced by the delegate. If the method is an instance method, the instance of the invocation
becomes the instance referenced by the delegate.

7.5.6 Element access
An element-access consists of a primary-expression, followed by a “[“ token, followed by an expression-list,
followed by a “]” token. The expression-list consists of one or more expressions, separated by commas.

element-access:
primary-expression [expression-list]

expression-list:
expression
expression-list , expression

If the primary-expression of an element-access is a value of an array-type, the element-access is an array access
(§7.5.6.1). Otherwise, the primary-expression must be a variable or value of a class, struct, or interface type that
has one or more indexer members, and the element-access is then an indexer access (§7.5.6.2).

7.5.6.1 Array access
For an array access, the primary-expression of the element-access must be a value of an array-type. The number
of expressions in the expression-list must be the same as the rank of the array-type, and each expression must be
of type int or of a type that can be implicitly converted to int.

The result of evaluating an array access is a variable of the element type of the array, namely the array element
selected by the value(s) of the expression(s) in the expression-list.

The run-time processing of an array access of the form P[A], where P is a primary-expression of an array-type
and A is an expression-list, consists of the following steps:

• P is evaluated. If this evaluation causes an exception, no further steps are executed.

• The index expressions of the expression-list are evaluated in order, from left to right. Following evaluation
of each index expression, an implicit conversion (§6.1) to type int is performed. If evaluation of an index
expression or the subsequent implicit conversion causes an exception, then no further index expressions are
evaluated and no further steps are executed.

• The value of P is checked to be valid. If the value of P is null, a NullReferenceException is thrown
and no further steps are executed.

• The value of each expression in the expression-list is checked against the actual bounds of each dimension
of the array instance referenced by P. If one or more values are out of range, an
IndexOutOfRangeException is thrown and no further steps are executed.

• The location of the array element given by the index expression(s) is computed, and this location becomes
the result of the array access.

7.5.6.2 Indexer access
For an indexer access, the primary-expression of the element-access must be a variable or value of a class,
struct, or interface type, and this type must implement one or more indexers that are applicable with respect to
the expression-list of the element-access.

The compile-time processing of an indexer access of the form P[A], where P is a primary-expression of a class,
struct, or interface type T, and A is an expression-list, consists of the following steps:

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 101

• The set of indexers provided by T is constructed. The set consists of all indexers declared in T or a base type
of T that are not override declarations and are accessible in the current context (§3.3).

• The set is reduced to those indexers that are applicable and not hidden by other indexers. The following
rules are applied to each indexer S.I in the set, where S is the type in which the indexer I is declared:

• If I is not applicable with respect to A (§7.4.2.1), then I is removed from the set.

• If I is applicable with respect to A (§7.4.2.1), then all indexers declared in a base type of S are removed
from the set.

• If the resulting set of candidate indexers is empty, then no applicable indexers exist, and an error occurs. If
the candidate indexers are not all declared in the same type, the indexer access is ambiguous, and an error
occurs (this latter situation can only occur for an indexer access on an instance of an interface that has
multiple direct base interfaces).

• The best indexer of the set of candidate indexers is identified using the overload resolution rules of §7.4.2. If
a single best indexer cannot be identified, the indexer access is ambiguous, and an error occurs.

• The result of processing the indexer access is an expression classified as an indexer access. The indexer
access expression references the indexer determined in the step above, and has an associated instance
expression of P and an associated argument list of A.

Depending on the context in which it is used, an indexer access causes invocation of either the get-accessor or
the set-accessor of the indexer. If the indexer access is the target of an assignment, the set-accessor is invoked
to assign a new value (§7.13.1). In all other cases, the get-accessor is invoked to obtain the current value
(§7.1.1).

7.5.6.3 String indexing
The string class implements an indexer that allows the individual characters of a string to be accessed. The
indexer of the string class has the following declaration:

public char this[int index] { get; }

In other words, a read-only indexer that takes a single argument of type int and returns an element of type
char. Values passed for the index argument must be greater than or equal to zero and less than the length of
the string.

7.5.7 This access
A this-access consists of the reserved word this.

this-access:
this

A this-access is permitted only in the block of a constructor, an instance method, or an instance accessor. It has
one of the following meanings:

• When this is used in a primary-expression within a constructor of a class, it is classified as a value. The
type of the value is the class within which the reference occurs, and the value is a reference to the object
being constructed.

• When this is used in a primary-expression within an instance method or instance accessor of a class, it is
classified as a value. The type of the value is the class within which the reference occurs, and the value is a
reference to the object for which the method or accessor was invoked.

• When this is used in a primary-expression within a constructor of a struct, it is classified as a variable. The
type of the variable is the struct within which the reference occurs, and the variable represents the struct

C# LANGUAGE REFERENCE

102 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

being constructed. The this variable of a constructor of a struct behaves exactly the same as an out
parameter of the struct type—this in particular means that the variable must be definitely assigned in every
execution path of the constructor.

• When this is used in a primary-expression within an instance method or instance accessor of a struct, it is
classified as a variable. The type of the variable is the struct within which the reference occurs, and the
variable represents the struct for which the method or accessor was invoked. The this variable of an
instance method of a struct behaves exactly the same as a ref parameter of the struct type.

Use of this in a primary-expression in a context other than the ones listed above is an error. In particular, it is
not possible to refer to this in a static method, a static property accessor, or in a variable-initializer of a field
declaration.

7.5.8 Base access
A base-access consists of the reserved word base followed by either a “.” token and an identifier or an
expression-list enclosed in square brackets:

base-access:
base . identifier
base [expression-list]

A base-access is used to access base class members that are hidden by similarly named members in the current
class or struct. A base-access is permitted only in the block of a constructor, an instance method, or an instance
accessor. When base.I occurs in a class or struct, I must denote a member of the base class of that class or
struct. Likewise, when base[E] occurs in a class, an applicable indexer must exist in the base class.

At compile-time, base-access expressions of the form base.I and base[E] are evaluated exactly as if they
were written ((B)this).I and ((B)this)[E], where B is the base class of the class or struct in which the
construct occurs. Thus, base.I and base[E] correspond to this.I and this[E], except this is viewed as
an instance of the base class.

When a base-access references a function member (a method, property, or indexer), the function member is
considered non-virtual for purposes of function member invocation (§7.4.3). Thus, within an override of a
virtual function member, a base-access can be used to invoke the inherited implementation of the function
member. If the function member referenced by a base-access is abstract, an error occurs.

7.5.9 Postfix increment and decrement operators
post-increment-expression:

primary-expression ++

post-decrement-expression:
primary-expression --

The operand of a postfix increment or decrement operation must be an expression classified as a variable, a
property access, or an indexer access. The result of the operation is a value of the same type as the operand.

If the operand of a postfix increment or decrement operation is a property or indexer access, the property or
indexer must have both a get and a set accessor. If this is not the case, a compile-time error occurs.

Unary operator overload resolution (§7.2.3) is applied to select a specific operator implementation. Predefined
++ and -- operators exist for the following types: sbyte , byte, short , ushort, int , uint, long , ulong,
char, float, double , decimal , and any enum type. The predefined ++ operators return the value produced
by adding 1 to the argument, and the predefined -- operators return the value produced by subtracting 1 from
the argument.

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 103

The run-time processing of a postfix increment or decrement operation of the form x++ or x-- consists of the
following steps:

• If x is classified as a variable:

• x is evaluated to produce the variable.

• The value of x is saved.

• The selected operator is invoked with the saved value of x as its argument.

• The value returned by the operator is stored in the location given by the evaluation of x.

• The saved value of x becomes the result of the operation.

• If x is classified as a property or indexer access:

• The instance expression (if x is not static) and the argument list (if x is an indexer access) associated
with x are evaluated, and the results are used in the subsequent get and set accessor invocations.

• The get accessor of x is invoked and the returned value is saved.

• The selected operator is invoked with the saved value of x as its argument.

• The set accessor of x is invoked with the value returned by the operator as its value argument.

• The saved value of x becomes the result of the operation.

The ++ and -- operators also support prefix notation, as described in §7.6.7. The result of x++ or x-- is the
value of x before the operation, whereas the result of ++x or --x is the value of x after the operation. In either
case, x itself has the same value after the operation.

An operator ++ or operator -- implementation can be invoked using either postfix and prefix notation. It is
not possible to have separate operator implementations for the two notations.

7.5.10 new operator
The new operator is used to create new instances of types.

new-expression:
object-creation-expression
array-creation-expression
delegate-creation-expression

There are three forms of new expressions:

• Object creation expressions are used to create a new instances of class types and value types.

• Array creation expressions are used to create new instances of array types.

• Delegate creation expressions are used to create new instances of delegate types.

The new operator implies creation of an instance of a type, but does not necessarily imply dynamic allocation of
memory. In particular, instances of value types require no additional memory beyond the variables in which they
reside, and no dynamic allocations occur when new is used to create instances of value types.

7.5.10.1 Object creation expressions
An object-creation-expression is used to create a new instance of a class-type or a value-type.

object-creation-expression:
new type (argument-listopt)

C# LANGUAGE REFERENCE

104 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The type of an object-creation-expression must be a class-type or a value-type. The type cannot be an abstract
class-type.

The optional argument-list (§7.4.1) is permitted only if the type is a class-type or a struct-type.

The compile-time processing of an object-creation-expression of the form new T(A), where T is a class-type or
a value-type and A is an optional argument-list, consists of the following steps:

• If T is a value-type and A is not present:

• The object-creation-expression is a default constructor invocation. The result of the object-creation-
expression is a value of type T, namely the default value for T as defined in §4.1.1.

• Otherwise, if T is a class-type or a struct-type:

• If T is an abstract class-type, an error occurs.

• The constructor to invoke is determined using the overload resolution rules of §7.4.2. The set of
candidate constructors consists of all accessible constructors declared in T. If the set of candidate
constructors is empty, or if a single best constructor cannot be identified, an error occurs.

• The result of the object-creation-expression is a value of type T, namely the value produced by invoking
the constructor determined in the step above.

• Otherwise, the object-creation-expression is invalid, and an error occurs.

The run-time processing of an object-creation-expression of the form new T(A), where T is class-type or a
struct-type and A is an optional argument-list, consists of the following steps:

• If T is a class-type:

• A new instance of class T is allocated. If there is not enough memory available to allocate the new
instance, an OutOfMemoryException is thrown and no further steps are executed.

• All fields of the new instance are initialized to their default values (§5.2).

• The constructor is invoked according to the rules of function member invocation (§7.4.3). A reference to
the newly allocated instance is automatically passed to the constructor and the instance can be accessed
from within the constructor as this.

• If T is a struct-type:

• An instance of type T is created by allocating a temporary local variable. Since a constructor of a struct-
type is required to definitely assign a value to each field of the instance being created, no initialization
of the temporary variable is necessary.

• The constructor is invoked according to the rules of function member invocation (§7.4.3). A reference to
the newly allocated instance is automatically passed to the constructor and the instance can be accessed
from within the constructor as this.

7.5.10.2 Array creation expressions
An array-creation-expression is used to create a new instance of an array-type.

array-creation-expression:
new non-array-type [expression-list] rank-specifiersopt array-initializeropt

new array-type array-initializer

An array creation expression of first form allocates an array instance of the type that results from deleting each
of the individual expressions from the expression list. For example, the array creation expression new int[10,

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 105

20] produces an array instance of type int[,], and the array creation expression new int[10][,] produces
an array of type int[][,]. Each expression in the expression list must be of type int or of a type that can be
implicitly converted to int. The value of each expression determines the length of the corresponding dimension
in the newly allocated array instance.

If an array creation expression of the first form includes an array initializer, each expression in the expression
list must be a constant and the rank and dimension lengths specified by the expression list must match those of
the array initializer.

In an array creation expression of the second form, the rank of the specified array type must match that of the
array initializer. The individual dimension lengths are inferred from the number of elements in each of the
corresponding nesting levels of the array initializer. Thus, the expression

new int[,] {{0, 1}, {2, 3}, {4, 5}};

exactly corresponds to

new int[3, 2] {{0, 1}, {2, 3}, {4, 5}};

Array initializers are further described in §12.6.

The result of evaluating an array creation expression is classified as a value, namely a reference to the newly
allocated array instance. The run-time processing of an array creation expression consists of the following steps:

• The dimension length expressions of the expression-list are evaluated in order, from left to right. Following
evaluation of each expression, an implicit conversion (§6.1) to type int is performed. If evaluation of an
expression or the subsequent implicit conversion causes an exception, then no further expressions are
evaluated and no further steps are executed.

• The computed values for the dimension lengths are validated. If one or more of the values are less than zero,
an IndexOutOfRangeException is thrown and no further steps are executed.

• An array instance with the given dimension lengths is allocated. If there is not enough memory available to
allocate the new instance, an OutOfMemoryException is thrown and no further steps are executed.

• All elements of the new array instance are initialized to their default values (§5.2).

• If the array creation expression contains an array initializer, then each expression in the array initializer is
evaluated and assigned to its corresponding array element. The evaluations and assignments are performed
in the order the expressions are written in the array initializer—in other words, elements are initialized in
increasing index order, with the rightmost dimension increasing first. If evaluation of a given expression or
the subsequent assignment to the corresponding array element causes an exception, then no further elements
are initialized (and the remaining elements will thus have their default values).

An array creation expression permits instantiation of an array with elements of an array type, but the elements of
such an array must be manually initialized. For example, the statement

int[][] a = new int[100][];

creates a single-dimensional array with 100 elements of type int[]. The initial value of each element is null.
It is not possible for the same array creation expression to also instantiate the sub-arrays, and the statement

int[][] a = new int[100][5]; // Error

is an error. Instantiation of the sub-arrays must instead be performed manually, as in

int[][] a = new int[100][];
for (int i = 0; i < 100; i++) a[i] = new int[5];

When an array of arrays has a “rectangular” shape, that is when the sub-arrays are all of the same length, it is
more efficient to use a multi-dimensional array. In the example above, instantiation of the array of arrays creates
101 objects—one outer array and 100 sub-arrays. In contrast,

C# LANGUAGE REFERENCE

106 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

int[,] = new int[100, 5];

creates only a single object, a two-dimensional array, and accomplishes the allocation in a single statement.

7.5.10.3 Delegate creation expressions
A delegate-creation-expression is used to create a new instance of a delegate-type.

delegate-creation-expression:
new delegate-type (expression)

The argument of a delegate creation expression must be a method group or a value of a delegate-type. If the
argument is a method group, it identifies the method and, for an instance method, the object for which to create
a delegate. If the argument is a value of a delegate-type, it identifies a delegate instance of which to create a
copy.

The compile-time processing of a delegate-creation-expression of the form new D(E), where D is a delegate-
type and E is an expression, consists of the following steps:

• If E is a method group:

• If the method group resulted from a base-access, an error occurs.

• The set of methods identified by E must include exactly one method with precisely the same signature
and return type as those of D, and this becomes the method to which the newly created delegate refers. If
no matching method exists, or if more than one matching methods exists, an error occurs. If the selected
method is an instance method, the instance expression associated with E determines the target object of
the delegate.

• As in a method invocation, the selected method must be compatible with the context of the method
group: If the method is a static method, the method group must have resulted from a simple-name or a
member-access through a type. If the method is an instance method, the method group must have
resulted from a simple-name or a member-access through a variable or value. If the selected method
does not match the context of the method group, an error occurs.

• The result is a value of type D, namely a newly created delegate that refers to the selected method and
target object.

• Otherwise, if E is a value of a delegate-type:

• The delegate-type of E must have the exact same signature and return type as D, or otherwise an error
occurs.

• The result is a value of type D, namely a newly created delegate that refers to the same method and
target object as E.

• Otherwise, the delegate creation expression is invalid, and an error occurs.

The run-time processing of a delegate-creation-expression of the form new D(E), where D is a delegate-type
and E is an expression, consists of the following steps:

• If E is a method group:

• If the method selected at compile-time is a static method, the target object of the delegate is null.
Otherwise, the selected method is an instance method, and the target object of the delegate is determined
from the instance expression associated with E:

• The instance expression is evaluated. If this evaluation causes an exception, no further steps are
executed.

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 107

• If the instance expression is of a reference-type, the value computed by the instance expression
becomes the target object. If the target object is null, a NullReferenceException is thrown
and no further steps are executed.

• If the instance expression is of a value-type, a boxing operation (§4.3.1) is performed to convert the
value to an object, and this object becomes the target object.

• A new instance of the delegate type D is allocated. If there is not enough memory available to allocate
the new instance, an OutOfMemoryException is thrown and no further steps are executed.

• The new delegate instance is initialized with a reference to the method that was determined at compile-
time and a reference to the target object computed above.

• If E is a value of a delegate-type:

• E is evaluated. If this evaluation causes an exception, no further steps are executed.

• If the value of E is null, a NullReferenceException is thrown and no further steps are executed.

• A new instance of the delegate type D is allocated. If there is not enough memory available to allocate
the new instance, an OutOfMemoryException is thrown and no further steps are executed.

• The new delegate instance is initialized with references to the same method and object as the delegate
instance given by E.

The method and object to which a delegate refers are determined when the delegate is instantiated and then
remain constant for the entire lifetime of the delegate. In other words, it is not possible to change the target
method or object of a delegate once it has been created.

It is not possible to create a delegate that refers to a constructor, property, indexer, or user-defined operator.

As described above, when a delegate is created from a method group, the signature and return type of the
delegate determine which of the overloaded methods to select. In the example

delegate double DoubleFunc(double x);

class A
{

DoubleFunc f = new DoubleFunc(Square);

static float Square(float x) {
return x * x;

}

static double Square(double x) {
return x * x;

}
}

the A.f field is initialized with a delegate that refers to the second Square method because that method exactly
matches the signature and return type of DoubleFunc. Had the second Square method not been present, a
compile-time error would have occurred.

7.5.11 typeof operator
The typeof operator is used to obtain the System.Type object for a type.

typeof-expression:
typeof (type)

The result of a typeof-expression is the System.Type object for the indicated type.

The example

C# LANGUAGE REFERENCE

108 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

class Test
{

static void Main() {
Type[] t = {

typeof(int),
typeof(System.Int32),
typeof(string),
typeof(double[])

};
for (int i = 0; i < t.Length; i++) {

Console.WriteLine(t[i].Name);
}

}
}

produces the following output:

Int32
Int32
String
Double[]

Note that int and System.Int32 are the same type.

7.5.12 sizeof operator
sizeof-expression:

sizeof (type)

7.5.13 checked and unchecked operators
The checked and unchecked operators are used to control the overflow checking context for integral-type
arithmetic operations and conversions.

checked-expression:
checked (expression)

unchecked-expression:
unchecked (expression)

The checked operator evaluates the contained expression in a checked context, and the unchecked operator
evaluates the contained expression in an unchecked context. A checked-expression or unchecked-expression
corresponds exactly to a parenthesized-expression (§7.5.3), except that the contained expression is evaluated in
the given overflow checking context.

The overflow checking context can also be controlled through the checked and unchecked statements (§8.11).

The following operations are affected by the overflow checking context established by the checked and
unchecked operators and statements:

• The predefined ++ and -- unary operators (§7.5.9 and §7.6.7), when the operand is of an integral type.

• The predefined - unary operator (§7.6.2), when the operand is of an integral type.

• The predefined +, -, *, and / binary operators (§7.7), when both operands are of integral types.

• Explicit numeric conversions (§6.2.1) from one integral type to another integral type.

When one of the above operations produce a result that is too large to represent in the destination type, the
context in which the operation is performed controls the resulting behavior:

• In a checked context, if the operation is a constant expression (§7.15), a compile-time error occurs.
Otherwise, when the operation is performed at run-time, an OverflowException is thrown.

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 109

• In an unchecked context, the result is truncated by discarding any high-order bits that do not fit in the
destination type.

When a non-constant expression (an expression that is evaluated at run-time) is not enclosed by any checked or
unchecked operators or statements, the effect of an overflow during the run-time evaluation of the expression
depends on external factors (such as compiler switches and execution environment configuration). The effect is
however guaranteed to be either that of a checked evaluation or that of an unchecked evaluation.

For constant expressions (expressions that can be fully evaluated at compile-time), the default overflow
checking context is always checked. Unless a constant expression is explicitly placed in an unchecked
context, overflows that occur during the compile-time evaluation of the expression always cause compile-time
errors.

In the example

class Test
{

static int x = 1000000;
static int y = 1000000;

static int F() {
return checked(x * y); // Throws OverflowException

}

static int G() {
return unchecked(x * y); // Returns -727379968

}

static int H() {
return x * y; // Depends on default

}
}

no compile-time errors are reported since neither of the expressions can be evaluated at compile-time. At run-
time, the F() method throws an OverflowException, and the G() method returns –727379968 (the lower 32
bits of the out-of-range result). The behavior of the H() method depends on the default overflow checking
context for the compilation, but it is either the same as F() or the same as G().

In the example

class Test
{

const int x = 1000000;
const int y = 1000000;

static int F() {
return checked(x * y); // Compile error, overflow

}

static int G() {
return unchecked(x * y); // Returns -727379968

}

static int H() {
return x * y; // Compile error, overflow

}
}

the overflows that occur when evaluating the constant expressions in F() and H() cause compile-time errors to
be reported because the expressions are evaluated in a checked context. An overflow also occurs when
evaluating the constant expression in G(), but since the evaluation takes place in an unchecked context, the
overflow is not reported.

C# LANGUAGE REFERENCE

110 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The checked and unchecked operators only affect the overflow checking context for those operations that are
textually contained within the “(” and “)” tokens. The operators have no effect on function members that are
invoked as a result of evaluating the contained expression. In the example

class Test
{

static int Multiply(int x, int y) {
return x * y;

}

static int F() {
return checked(Multiply(1000000, 1000000));

}
}

the use of checked in F() does not affect the evaluation of x * y in Multiply() , and x * y is therefore
evaluated in the default overflow checking context.

The unchecked operator is convenient when writing constants of the signed integral types in hexadecimal
notation. For example:

class Test
{

public const int AllBits = unchecked((int)0xFFFFFFFF);

public const int HighBit = unchecked((int)0x80000000);
}

Both of the hexadecimal constants above are of type uint. Because the constants are outside the int range,
without the unchecked operator, the casts to int would produce compile-time errors.

7.6 Unary expressions
unary-expression:

primary-expression
+ unary-expression
- unary-expression
! unary-expression
~ unary-expression
* unary-expression
& unary-expression
pre-increment-expression
pre-decrement-expression
cast-expression

7.6.1 Unary plus operator
For an operation of the form +x, unary operator overload resolution (§7.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the type
of the result is the return type of the operator. The predefined unary plus operators are:

int operator +(int x);
uint operator +(uint x);
long operator +(long x);
ulong operator +(ulong x);
float operator +(float x);
double operator +(double x);
decimal operator +(decimal x);

For each of these operators, the result is simply the value of the operand.

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 111

7.6.2 Unary minus operator
For an operation of the form –x, unary operator overload resolution (§7.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the type
of the result is the return type of the operator. The predefined negation operators are:

• Integer negation:

int operator –(int x);
long operator –(long x);

The result is computed by subtracting x from zero. In a checked context, if the value of x is the maximum
negative int or long, an OverflowException is thrown. In an unchecked context, if the value of x is
the maximum negative int or long, the result is that same value and the overflow is not reported.

If the operand of the negation operator is of type uint, it is converted to type long, and the type of the
result is long. An exception is the rule that permits the int value -2147483648 (-231) to be written as a
decimal integer literal (§2.5.3.2).

If the operand of the negation operator is of type ulong, an error occurs. An exception is the rule that
permits the long value -9223372036854775808 (-263) to be written as decimal integer literal (§2.5.3.2).

• Floating-point negation:

float operator –(float x);
double operator –(double x);

The result is the value of x with its sign inverted. If x is NaN, the result is also NaN.

• Decimal negation:

decimal operator –(decimal x);

The result is computed by subtracting x from zero.

7.6.3 Logical negation operator
For an operation of the form !x, unary operator overload resolution (§7.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the type
of the result is the return type of the operator. Only one predefined logical negation operator exists:

bool operator !(bool x);

This operator computes the logical negation of the operand: If the operand is true, the result is false. If the
operand is false, the result is true.

7.6.4 Bitwise complement operator
For an operation of the form ~x, unary operator overload resolution (§7.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the type
of the result is the return type of the operator. The predefined bitwise complement operators are:

int operator ~(int x);
uint operator ~(uint x);
long operator ~(long x);
ulong operator ~(ulong x);

For each of these operators, the result of the operation is the bitwise complement of x.

Every enumeration type E implicitly provides the following bitwise complement operator:

E operator ~(E x);

C# LANGUAGE REFERENCE

112 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The result of evaluating ~x, where x is an expression of an enumeration type E with an underlying type U, is
exactly the same as evaluating (E)(~(U)x).

7.6.5 Indirection operator

7.6.6 Address operator

7.6.7 Prefix increment and decrement operators

pre-increment-expression:
++ unary-expression

pre-decrement-expression:
-- unary-expression

The operand of a prefix increment or decrement operation must be an expression classified as a variable, a
property access, or an indexer access. The result of the operation is a value of the same type as the operand.

If the operand of a prefix increment or decrement operation is a property or indexer access, the property or
indexer must have both a get and a set accessor. If this is not the case, a compile-time error occurs.

Unary operator overload resolution (§7.2.3) is applied to select a specific operator implementation. Predefined
++ and -- operators exist for the following types: sbyte , byte, short , ushort, int , uint, long , ulong,
char, float, double , decimal , and any enum type. The predefined ++ operators return the value produced
by adding 1 to the argument, and the predefined -- operators return the value produced by subtracting 1 from
the argument.

The run-time processing of a prefix increment or decrement operation of the form ++x or --x consists of the
following steps:

• If x is classified as a variable:

• x is evaluated to produce the variable.

• The selected operator is invoked with the value of x as its argument.

• The value returned by the operator is stored in the location given by the evaluation of x.

• The value returned by the operator becomes the result of the operation.

• If x is classified as a property or indexer access:

• The instance expression (if x is not static) and the argument list (if x is an indexer access) associated
with x are evaluated, and the results are used in the subsequent get and set accessor invocations.

• The get accessor of x is invoked.

• The selected operator is invoked with the value returned by the get accessor as its argument.

• The set accessor of x is invoked with the value returned by the operator as its value argument.

• The value returned by the operator becomes the result of the operation.

The ++ and -- operators also support postfix notation, as described in §7.5.9. The result of x++ or x-- is the
value of x before the operation, whereas the result of ++x or --x is the value of x after the operation. In either
case, x itself has the same value after the operation.

An operator ++ or operator -- implementation can be invoked using either postfix and prefix notation. It is
not possible to have separate operator implementations for the two notations.

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 113

7.6.8 Cast expressions
A cast-expression is used to explicitly convert an expression to a given type.

cast-expression:
(type) unary-expression

A cast-expression of the form (T)E, where T is a type and E is a unary-expression, performs an explicit
conversion (§6.2) of the value of E to type T. If no explicit conversion exists from the type of E to T, an error
occurs. Otherwise, the result is the value produced by the explicit conversion. The result is always classified as a
value, even if E denotes a variable.

The grammar for a cast-expression leads to certain syntactic ambiguities. For example, the expression (x)–y
could either be interpreted as a cast-expression (a cast of –y to type x) or as an additive-expression combined
with a parenthesized-expression (which computes the value x – y).

To resolve cast-expression ambiguities, the following rule exists: A sequence of one or more tokens (§2.4.6)
enclosed in parentheses is considered the start of a cast-expression only if at least one of the following are true:

• The sequence of tokens is correct grammar for a type, but not for an expression.

• The sequence of tokens is correct grammar for a type, and the token immediately following the closing
parentheses is the token “~”, the token “!”, the token “(”, an identifier (§2.5), a literal (§2.5.3), or any
keyword (§2.5.2) except is.

The above rules mean that only if the construct is unambiguously a cast-expression is it considered a cast-
expression.

The term “correct grammar” above means only that the sequence of tokens must conform to the particular
grammatical production. It specifically does not consider the actual meaning of any constituent identifiers. For
example, if x and y are identifiers, then x.y is correct grammar for a type, even if x.y doesn’t actually denote a
type.

From the disambiguation rules it follows that, if x and y are identifiers, (x)y, (x)(y) , and (x)(-y) are cast-
expressions, but (x)-y is not, even if x identifies a type. However, if x is a keyword that identifies a predefined
type (such as int), then all four forms are cast-expressions (because such a keyword could not possibly be an
expression by itself).

7.7 Arithmetic operators
The *, /, %, +, and – operators are called the arithmetic operators.

multiplicative-expression:
unary-expression
multiplicative-expression * unary-expression
multiplicative-expression / unary-expression
multiplicative-expression % unary-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression – multiplicative-expression

7.7.1 Multiplication operator
For an operation of the form x * y, binary operator overload resolution (§7.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

C# LANGUAGE REFERENCE

114 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The predefined multiplication operators are listed below. The operators all compute the product of x and y.

• Integer multiplication:

int operator *(int x, int y);
uint operator *(uint x, uint y);
long operator *(long x, long y);
ulong operator *(ulong x, ulong y);

In a checked context, if the product is outside the range of the result type, an OverflowException is
thrown. In an unchecked context, overflows are not reported and any significant high-order bits of the
result are discarded.

• Floating-point multiplication:

float operator *(float x, float y);
double operator *(double x, double y);

The product is computed according to the rules of IEEE 754 arithmetic. The following table lists the results
of all possible combinations of nonzero finite values, zeros, infinities, and NaN’s. In the table, x and y are
positive finite values. z is the result of x * y. If the result is too large for the destination type, z is infinity. If
the result is too small for the destination type, z is zero.

+y –y +0 –0 +8 –8 NaN

+x z –z +0 –0 +8 –8 NaN

–x –z z –0 +0 –8 +8 NaN

+0 +0 –0 +0 –0 NaN NaN NaN

–0 –0 +0 –0 +0 NaN NaN NaN

+8 +8 –8 NaN NaN +8 –8 NaN

–8 –8 +8 NaN NaN –8 +8 NaN

NaN NaN NaN NaN NaN NaN NaN NaN

• Decimal multiplication:

decimal operator *(decimal x, decimal y);

If the resulting value is too large to represent in the decimal format, an OverflowException is thrown.
If the result value is too small to represent in the decimal format, the result is zero.

7.7.2 Division operator
For an operation of the form x / y, binary operator overload resolution (§7.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

The predefined division operators are listed below. The operators all compute the quotient of x and y.

• Integer division:

int operator /(int x, int y);
uint operator /(uint x, uint y);
long operator /(long x, long y);
ulong operator /(ulong x, ulong y);

If the value of the right operand is zero, a DivideByZeroException is thrown.

The division rounds the result towards zero, and the absolute value of the result is the largest possible
integer that is less than the absolute value of the quotient of the two operands. The result is zero or positive
when the two operands have the same sign and zero or negative when the two operands have opposite signs.

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 115

If the left operand is the maximum negative int or long and the right operand is –1, an overflow occurs. In
a checked context, this causes an OverflowException to be thrown. In an unchecked context, the
overflow is not reported and the result is instead the value of the left operand.

• Floating-point division:

float operator /(float x, float y);
double operator /(double x, double y);

The quotient is computed according to the rules of IEEE 754 arithmetic. The following table lists the results
of all possible combinations of nonzero finite values, zeros, infinities, and NaN’s. In the table, x and y are
positive finite values. z is the result of x / y. If the result is too large for the destination type, z is infinity. If
the result is too small for the destination type, z is zero.

+y –y +0 –0 +8 –8 NaN

+x z –z +8 –8 +0 –0 NaN

–x –z z –8 +8 –0 +0 NaN

+0 +0 –0 NaN NaN +0 –0 NaN

–0 –0 +0 NaN NaN –0 +0 NaN

+8 +8 –8 +8 –8 NaN NaN NaN

–8 –8 +8 –8 +8 NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

• Decimal division:

decimal operator /(decimal x, decimal y);

If the value of the right operand is zero, a DivideByZeroException is thrown. If the resulting value is
too large to represent in the decimal format, an OverflowException is thrown. If the result value is too
small to represent in the decimal format, the result is zero.

7.7.3 Remainder operator
For an operation of the form x % y, binary operator overload resolution (§7.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

The predefined remainder operators are listed below. The operators all compute the remainder of the division
between x and y.

• Integer remainder:

int operator %(int x, int y);
int operator %(uint x, uint y);
long operator %(long x, long y);
ulong operator %(ulong x, ulong y);

The result of x % y is the value produced by x – (x / y) * y. If y is zero, a DivideByZeroException is
thrown. The remainder operator never causes an overflow.

• Floating-point remainder:

float operator %(float x, float y);
double operator %(double x, double y);

The following table lists the results of all possible combinations of nonzero finite values, zeros, infinities,
and NaN’s. In the table, x and y are positive finite values. z is the result of x % y and is computed as x – n *
y, where n is the largest possible integer that is less than or equal to x / y. This method of computing the

C# LANGUAGE REFERENCE

116 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

remainder is analogous to that used for integer operands, but differs from the IEEE 754 definition (in which
n is the integer closest to x / y).

+y –y +0 –0 +8 –8 NaN

+x z z NaN NaN x x NaN

–x –z –z NaN NaN –x –x NaN

+0 +0 +0 NaN NaN +0 +0 NaN

–0 –0 –0 NaN NaN –0 –0 NaN

+8 NaN NaN NaN NaN NaN NaN NaN

–8 NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

• Decimal remainder:

decimal operator %(decimal x, decimal y);

If the value of the right operand is zero, a DivideByZeroException is thrown. If the resulting value is
too large to represent in the decimal format, an OverflowException is thrown. If the result value is too
small to represent in the decimal format, the result is zero.

7.7.4 Addition operator
For an operation of the form x + y, binary operator overload resolution (§7.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

The predefined addition operators are listed below. For numeric and enumeration types, the predefined addition
operators compute the sum of the two operands. When one or both operands are of type string, the predefined
addition operators concatenate the string representation of the operands.

• Integer addition:

int operator +(int x, int y);
uint operator +(uint x, uint y);
long operator +(long x, long y);
ulong operator +(ulong x, ulong y);

In a checked context, if the sum is outside the range of the result type, an OverflowException is
thrown. In an unchecked context, overflows are not reported and any significant high-order bits of the
result are discarded.

• Floating-point addition:

float operator +(float x, float y);
double operator +(double x, double y);

The sum is computed according to the rules of IEEE 754 arithmetic. The following table lists the results of
all possible combinations of nonzero finite values, zeros, infinities, and NaN’s. In the table, x and y are
nonzero finite values, and z is the result of x + y. If x and y have the same magnitude but opposite signs, z
is positive zero. If x + y is too large to represent in the destination type, z is an infinity with the same sign as
x + y. If x + y is too small to represent in the destination type, z is a zero with the same sign as x + y.

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 117

y +0 –0 +8 –8 NaN

x z x x +8 –8 NaN

+0 y +0 +0 +8 –8 NaN

–0 y +0 –0 +8 –8 NaN

+8 +8 +8 +8 +8 NaN NaN

–8 –8 –8 –8 NaN –8 NaN

NaN NaN NaN NaN NaN NaN NaN

• Decimal addition:

decimal operator +(decimal x, decimal y);

If the resulting value is too large to represent in the decimal format, an OverflowException is thrown.
If the result value is too small to represent in the decimal format, the result is zero.

• Enumeration addition. Every enumeration type implicitly provides the following predefined operators,
where E is the enum type, and U is the underlying type of E:

E operator +(E x, U y);
E operator +(U x, E y);

The operators are evaluated exactly as (E)((U)x + (U)y).

• String concatenation:

string operator +(string x, string y);
string operator +(string x, object y);
string operator +(object x, string y);

The binary + operator performs string concatenation when one or both operands are of type string. If an
operand of string concatenation is null, an empty string is substituted. Otherwise, any non-string argument
is converted to its string representation by invoking the virtual ToString() method inherited from type
object. If ToString() returns null, an empty string is substituted.

The result of the string concatenation operator is a string that consists of the characters of the left operand
followed by the characters of the right operand. The string concatenation operator never returns a null
value. An OutOfMemoryException may be thrown if there is not enough memory available to allocate the
resulting string.

• Delegate concatenation. Every delegate type implicitly provides the following predefined operator, where D
is the delegate type:

D operator +(D x, D y);

7.7.5 Subtraction operator
For an operation of the form x – y, binary operator overload resolution (§7.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

The predefined subtraction operators are listed below. The operators all subtract y from x.

• Integer subtraction:

int operator –(int x, int y);
uint operator –(uint x, uint y);
long operator –(long x, long y);
ulong operator –(ulong x, ulong y);

C# LANGUAGE REFERENCE

118 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

In a checked context, if the difference is outside the range of the result type, an OverflowException is
thrown. In an unchecked context, overflows are not reported and any significant high-order bits of the
result are discarded.

• Floating-point subtraction:

float operator –(float x, float y);
double operator –(double x, double y);

The difference is computed according to the rules of IEEE 754 arithmetic. The following table lists the
results of all possible combinations of nonzero finite values, zeros, infinities, and NaN’s. In the table, x and
y are nonzero finite values, and z is the result of x – y. If x and y are equal, z is positive zero. If x – y is too
large to represent in the destination type, z is an infinity with the same sign as x – y. If x – y is too small to
represent in the destination type, z is a zero with the same sign as x – y.

y +0 –0 +8 –8 NaN

x z x x –8 +8 NaN

+0 –y +0 +0 –8 +8 NaN

–0 –y –0 +0 –8 +8 NaN

+8 +8 +8 +8 NaN +8 NaN

–8 –8 –8 –8 –8 NaN NaN

NaN NaN NaN NaN NaN NaN NaN

• Decimal subtraction:

decimal operator –(decimal x, decimal y);

If the resulting value is too large to represent in the decimal format, an OverflowException is thrown.
If the result value is too small to represent in the decimal format, the result is zero.

• Enumeration subtraction. Every enumeration type implicitly provides the following predefined operator,
where E is the enum type, and U is the underlying type of E:

U operator –(E x, E y);

This operator is evaluated exactly as (U)((U)x – (U)y). In other words, the operator computes the
difference between the ordinal values of x and y, and the type of the result is the underlying type of the
enumeration.

E operator –(E x, U y);

This operator is evaluated exactly as (E)((U)x – y). In other words, the operator subtracts a value from
the underlying type of the enumeration, yielding a value of the enumeration.

• Delegate removal. Every delegate type implicitly provides the following predefined operator, where D is the
delegate type:

D operator –(D x, D y);

7.8 Shift operators
The << and >> operators are used to perform bit shifting operations.

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 119

For an operation of the form x << count or x >> count, binary operator overload resolution (§7.2.4) is applied
to select a specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

When declaring an overloaded shift operator, the type of the first operand must always be the class or struct
containing the operator declaration, and the type of the second operand must always be int.

The predefined shift operators are listed below.

• Shift left:

int operator <<(int x, int count);
uint operator <<(uint x, int count);
long operator <<(long x, int count);
ulong operator <<(ulong x, int count);

The << operator shifts x left by a number of bits computed as described below.

The high-order bits of x are discarded, the remaining bits are shifted left, and the low-order empty bit
positions are set to zero.

• Shift right:

int operator >>(int x, int count);
uint operator >>(uint x, int count);
long operator >>(long x, int count);
ulong operator >>(ulong x, int count);

The >> operator shifts x right by a number of bits computed as described below.

When x is of type int or long, the low-order bits of x are discarded, the remaining bits are shifted right,
and the high-order empty bit positions are set to zero if x is non-negative and set to one if x is negative.

When x is of type uint or ulong, the low-order bits of x are discarded, the remaining bits are shifted right,
and the high-order empty bit positions are set to zero.

For the predefined operators, the number of bits to shift is computed as follows:

• When the type of x is int or uint, the shift count is given by the low-order five bits of count. In other
words, the shift count is computed from count & 0x1F.

• When the type of x is long or ulong, the shift count is given by the low-order six bits of count. In other
words, the shift count is computed from count & 0x3F.

If the resulting shift count is zero, the shift operators is simply return the value of x.

Shift operations never cause overflows and produce the same results in checked and unchecked contexts.

When the left operand of the >> operator is of a signed integral type, the operator performs an arithmetic shift
right wherein the value of the most significant bit (the sign bit) of the operand is propagated to the high-order
empty bit positions. When the left operand of the >> operator is of an unsigned integral type, the operator
performs a logical shift right wherein high-order empty bit positions are always set to zero. To perform the
opposite operation of that inferred from the operand type, explicit casts can be used. For example, if x is a
variable of type int, the operation (int)((uint)x >> y) performs a logical shift right of x.

7.9 Relational operators
The ==, !=, <, >, <= , >=, and is operators are called the relational operators.

C# LANGUAGE REFERENCE

120 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
relational-expression is reference-type

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

The is operator is described in §7.9.9.

The ==, !=, <, >, <= and >= operators as a group are called the comparison operators. For an operation of the
form x op y, where op is a comparison operator, overload resolution (§7.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

The predefined comparison operators are described in the following sections. All predefined comparison
operators return a result of type bool, as described in the following table.

Operation Result
x == y true if x is equal to y , false otherwise

x != y true if x is not equal to y, false otherwise

x < y true if x is less than y, false otherwise

x > y true if x is greater than y, false otherwise

x <= y true if x is less than or equal to y, false otherwise

x >= y true if x is greater than or equal to y, false otherwise

7.9.1 Integer comparison operators
The predefined integer comparison operators are:

bool operator ==(int x, int y);
bool operator ==(uint x, uint y);
bool operator ==(long x, long y);
bool operator ==(ulong x, ulong y);

bool operator !=(int x, int y);
bool operator !=(uint x, uint y);
bool operator !=(long x, long y);
bool operator !=(ulong x, ulong y);

bool operator <(int x, int y);
bool operator <(uint x, uint y);
bool operator <(long x, long y);
bool operator <(ulong x, ulong y);

bool operator >(int x, int y);
bool operator >(uint x, uint y);
bool operator >(long x, long y);
bool operator >(ulong x, ulong y);

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 121

bool operator <=(int x, int y);
bool operator <=(uint x, uint y);
bool operator <=(long x, long y);
bool operator <=(ulong x, ulong y);

bool operator >=(int x, int y);
bool operator >=(uint x, uint y);
bool operator >=(long x, long y);
bool operator >=(ulong x, ulong y);

Each of these operators compare the numeric values of the two integer operands and return a bool value that
indicates whether the particular relation is true or false.

7.9.2 Floating-point comparison operators
The predefined floating-point comparison operators are:

bool operator ==(float x, float y);
bool operator ==(double x, double y);

bool operator !=(float x, float y);
bool operator !=(double x, double y);

bool operator <(float x, float y);
bool operator <(double x, double y);

bool operator >(float x, float y);
bool operator >(double x, double y);

bool operator <=(float x, float y);
bool operator <=(double x, double y);

bool operator >=(float x, float y);
bool operator >=(double x, double y);

The operators compare the operands according to the rules of the IEEE 754 standard:

• If either operand is NaN, the result is false for all operators except !=, and true for the != operator. For
any two operands, x != y always produces the same result as !(x == y). However, when one or both
operands are NaN, the <, >, <=, and >= operators do not produce the same results as the logical negation of
the opposite operator. For example, if either of x and y is NaN, then x < y is false, but !(x >= y) is true.

• When neither operand is NaN, the operators compare the values of the two floating-point operands with
respect to the ordering

–8 < –max < ... < –min < –0.0 == +0.0 < +min < ... < +max < +8

where min and max are the smallest and largest positive finite values that can be represented in the given
floating-point format. Notable effects of this ordering are:

• Negative and positive zero are considered equal.

• A negative infinity is considered less than all other values, but equal to another negative infinity.

• A positive infinity is considered greater than all other values, but equal to another positive infinity.

7.9.3 Decimal comparison operators
The predefined decimal comparison operators are:

bool operator ==(decimal x, decimal y);

bool operator !=(decimal x, decimal y);

bool operator <(decimal x, decimal y);

bool operator >(decimal x, decimal y);

C# LANGUAGE REFERENCE

122 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

bool operator <=(decimal x, decimal y);

bool operator >=(decimal x, decimal y);

Each of these operators compare the numeric values of the two decimal operands and return a bool value that
indicates whether the particular relation is true or false.

7.9.4 Boolean equality operators
The predefined boolean equality operators are:

bool operator ==(bool x, bool y);

bool operator !=(bool x, bool y);

The result of == is true if both x and y are true or if both x and y are false. Otherwise, the result is false.

The result of != is false if both x and y are true or if both x and y are false. Otherwise, the result is true.
When the operands are of type bool, the != operator produces the same result as the ̂operator.

7.9.5 Enumeration comparison operators
Every enumeration type implicitly provides the following predefined comparison operators:

bool operator ==(E x, E y);

bool operator !=(E x, E y);

bool operator <(E x, E y);

bool operator >(E x, E y);

bool operator <=(E x, E y);

bool operator >=(E x, E y);

The result of evaluating x op y, where x and y are expressions of an enumeration type E with an underlying type
U, and op is one of the comparison operators, is exactly the same as evaluating ((U)x) op ((U)y). In other
words, the enumeration type comparison operators simply compare the underlying integral values of the two
operands.

7.9.6 Reference type equality operators
The predefined reference type equality operators are:

bool operator ==(object x, object y);

bool operator !=(object x, object y);

The operators return the result of comparing the two references for equality or non-equality.

Since the predefined reference type equality operators accept operands of type object, they apply to all types
that do not declare applicable operator == and operator != members. Conversely, any applicable user-
defined equality operators effectively hide the predefined reference type equality operators.

The predefined reference type equality operators require the operands to be reference-type values or the value
null, and furthermore require that an implicit conversion exists from the type of either operand to the type of
the other operand. Unless both of these conditions are true, a compile-time error occurs. Notable implications of
these rules are:

• It is an error to use the predefined reference type equality operators to compare two references that are
known to be different at compile-time. For example, if the compile-time types of the operands are two class
types A and B, and if neither A nor B derives from the other, then it would be impossible for the two
operands to reference the same object. Thus, the operation is considered a compile-time error.

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 123

• The predefined reference type equality operators do not permit value type operands to be compared.
Therefore, unless a struct type declares its own equality operators, it is not possible to compare values of
that struct type.

• The predefined reference type equality operators never cause boxing operations to occur for their operands.
It would be meaningless to perform such boxing operations, since references to the newly allocated boxed
instances would necessarily differ from all other references.

For an operation of the form x == y or x != y, if any applicable operator == or operator != exists, the
operator overload resolution (§7.2.4) rules will select that operator instead of the predefined reference type
equality operator. However, it is always possible to select the reference type equality operator by explicitly
casting one or both of the operands to type object. The example

class Test
{

static void Main() {
string s = "Test";
string t = string.Copy(s);
Console.WriteLine(s == t);
Console.WriteLine((object)s == t);
Console.WriteLine(s == (object)t);
Console.WriteLine((object)s == (object)t);

}
}

produces the output

True
False
False
False

The s and t variables refer to two distinct string instances containing the same characters. The first
comparison outputs True because the predefined string equality operator (§7.9.7) is selected when both
operands are of type string. The remaining comparisons all output False because the predefined reference
type equality operator is selected when one or both of the operands are of type object.

Note that the above technique is not meaningful for value types. The example

class Test
{

static void Main() {
int i = 123;
int j = 123;
Console.WriteLine((object)i == (object)j);

}
}

outputs False because the casts create references to two separate instances of boxed int values.

7.9.7 String equality operators
The predefined string equality operators are:

bool operator ==(string x, string y);

bool operator !=(string x, string y);

Two string values are considered equal when one of the following is true:

• Both values are null.

• Both values are non-null references to string instances that have identical lengths and identical characters in
each character position.

C# LANGUAGE REFERENCE

124 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The string equality operators compare string values rather than string references. When two separate string
instances contain the exact same sequence of characters, the values of the strings are equal, but the references
are different. As described in §7.9.6, the reference type equality operators can be used to compare string
references instead of string values.

7.9.8 Delegate equality operators
Every delegate type implicitly provides the following predefined comparison operators, where D is any delegate
type:

bool operator ==(D x, D y);

bool operator !=(D x, D y);

7.9.9 The is operator
The is operator is used to check whether the run-time type of an object is compatible with a given type. In an
operation of the form e is T, e must be an expression of a reference-type and T must be a reference-type. If this
is not the case, a compile-time error occurs.

The operation e is T returns true if e is not null and if an implicit reference conversion (§6.1.4) from the
run-time type of the instance referenced by e to the type given by T exists. In other words, e is T checks that e
is not null and that a cast-expression (§7.6.8) of the form (T)(e) will complete without throwing an
exception.

If e is T is known at compile-time to always be true or always be false, a compile-time error occurs. The
operation is known to always be true if an implicit reference conversion exists from the compile-time type of e
to T. The operation is known to always be false if no implicit or explicit reference conversion exists from the
compile-time type of e to T.

7.10 Logical operators
The &, ^, and | operators are called the logical operators.

and-expression:
equality-expression
and-expression & equality-expression

exclusive-or-expression:
and-expression
exclusive-or-expression ^ and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

For an operation of the form x op y, where op is one of the logical operators, overload resolution (§7.2.4) is
applied to select a specific operator implementation. The operands are converted to the parameter types of the
selected operator, and the type of the result is the return type of the operator.

The predefined logical operators are described in the following sections.

7.10.1 Integer logical operators
The predefined integer logical operators are:

int operator &(int x, int y);
uint operator &(uint x, uint y);
long operator &(long x, long y);
ulong operator &(ulong x, ulong y);

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 125

int operator |(int x, int y);
uint operator |(uint x, uint y);
long operator |(long x, long y);
ulong operator |(ulong x, ulong y);

int operator ^(int x, int y);
uint operator ^(uint x, uint y);
long operator ^(long x, long y);
ulong operator ^(ulong x, ulong y);

The & operator computes the bitwise logical AND of the two operands, the | operator computes the bitwise
logical OR of the two operands, and the ^ operator computes the bitwise logical exclusive OR of the two
operands. No overflows are possible from these operations.

7.10.2 Enumeration logical operators
Every enumeration type E implicitly provides the following predefined logical operators:

E operator &(E x, E y);
E operator |(E x, E y);
E operator ^(E x, E y);

The result of evaluating x op y, where x and y are expressions of an enumeration type E with an underlying type
U, and op is one of the logical operators, is exactly the same as evaluating (E)((U)x) op ((U)y). In other
words, the enumeration type logical operators simply perform the logical operation on the underlying type of the
two operands.

7.10.3 Boolean logical operators
The predefined boolean logical operators are:

bool operator &(bool x, bool y);

bool operator |(bool x, bool y);

bool operator ^(bool x, bool y);

The result of x & y is true if both x and y are true. Otherwise, the result is false.

The result of x | y is true if either x or y is true. Otherwise, the result is false.

The result of x ^ y is true if x is true and y is false, or x is false and y is true. Otherwise, the result is
false. When the operands are of type bool, the ^ operator computes the same result as the != operator.

7.11 Conditional logical operators
The && and || operators are called the conditional logical operators. They are at times also called the “short-
circuiting” logical operators.

conditional-and-expression:
inclusive-or-expression
conditional-and-expression && inclusive-or-expression

conditional-or-expression:
conditional-and-expression
conditional-or-expression || conditional-and-expression

The && and || operators are conditional versions of the & and | operators:

• The operation x && y corresponds to the operation x & y, except that y is evaluated only if x is true.

• The operation x || y corresponds to the operation x | y, except that y is evaluated only if x is false.

C# LANGUAGE REFERENCE

126 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

An operation of the form x && y or x || y is processed by applying overload resolution (§7.2.4) as if the
operation was written x & y or x | y. Then,

• If overload resolution fails to find a single best operator, or if overload resolution selects one of the
predefined integer logical operators, an error occurs.

• Otherwise, if the selected operator is one of the predefined boolean logical operators (§7.10.2), the operation
is processed as described in §7.11.1.

• Otherwise, the selected operator is a user-defined operator, and the operation is processed as described in
§7.11.2.

It is not possible to directly overload the conditional logical operators. However, because the conditional logical
operators are evaluated in terms of the regular logical operators, overloads of the regular logical operators are,
with certain restrictions, also considered overloads of the conditional logical operators. This is described further
in §7.11.2.

7.11.1 Boolean conditional logical operators
When the operands of && or || are of type bool, or when the operands are of types that do not define an
applicable operator & or operator |, but do define implicit conversions to bool, the operation is processed
as follows:

• The operation x && y is evaluated as x? y: false. In other words, x is first evaluated and converted to type
bool. Then, if x is true , y is evaluated and converted to type bool, and this becomes the result of the
operation. Otherwise, the result of the operation is false.

• The operation x || y is evaluated as x? true: y. In other words, x is first evaluated and converted to type
bool. Then, if x is true , the result of the operation is true. Otherwise, y is evaluated and converted to
type bool, and this becomes the result of the operation.

7.11.2 User-defined conditional logical operators
When the operands of && or || are of types that declare an applicable user-defined operator & or operator
|, both of the following must be true, where T is the type in which the selected operator is declared:

• The return type and the type of each parameter of the selected operator must be T. In other words, the
operator must compute the logical AND or the logical OR of two operands of type T, and must return a result
of type T.

• T must contain declarations of operator true and operator false.

A compile-time error occurs if either of these requirements is not satisfied. Otherwise, the && or || operation is
evaluated by combining the user-defined operator true or operator false with the selected user-defined
operator:

• The operation x && y is evaluated as T.false(x)? x: T.&(x, y), where T.false(x) is an invocation of
the operator false declared in T, and T.&(x, y) is an invocation of the selected operator &. In other
words, x is first evaluated and operator false is invoked on the result to determine if x is definitely
false. Then, if x is definitely false, the result of the operation is the value previously computed for x.
Otherwise, y is evaluated, and the selected operator & is invoked on the value previously computed for x
and the value computed for y to produce the result of the operation.

• The operation x || y is evaluated as T.true(x)? x: T.|(x, y), where T.true(x) is an invocation of
the operator true declared in T, and T.|(x, y) is an invocation of the selected operator |. In other
words, x is first evaluated and operator true is invoked on the result to determine if x is definitely true.
Then, if x is definitely true, the result of the operation is the value previously computed for x. Otherwise, y

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 127

is evaluated, and the selected operator | is invoked on the value previously computed for x and the value
computed for y to produce the result of the operation.

In either of these operations, the expression given by x is only evaluated once, and the expression given by y is
either not evaluated or evaluated exactly once.

For an example of a type that implements operator true and operator false, see §11.3.2.

7.12 Conditional operator
The ?: operator is called the conditional operator. It is at times also called the ternary operator.

conditional-expression:
conditional-or-expression
conditional-or-expression ? expression : expression

A conditional expression of the form b? x: y first evaluates the condition b. Then, if b is true, x is evaluated
and becomes the result of the operation. Otherwise, y is evaluated and becomes the result of the operation. A
conditional expression never evaluates both x and y.

The conditional operator is right-associative, meaning that operations are grouped from right to left. For
example, an expression of the form a? b: c? d: e is evaluated as a? b: (c? d: e).

The first operand of the ?: operator must be an expression of a type that can be implicitly converted to bool, or
an expression of a type that implements operator true. If neither of these requirements are satisfied, a
compile-time error occurs.

The second and third operands of the ?: operator control the type of the conditional expression. Let X and Y be
the types of the second and third operands. Then,

• If X and Y are the same type, then this is the type of the conditional expression.

• Otherwise, if an implicit conversion (§6.1) exists from X to Y, but not from Y to X, then Y is the type of the
conditional expression.

• Otherwise, if an implicit conversion (§6.1) exists from Y to X, but not from X to Y, then X is the type of the
conditional expression.

• Otherwise, no expression type can be determined, and a compile-time error occurs.

The run-time processing of a conditional expression of the form b? x: y consists of the following steps:

• First, b is evaluated, and the bool value of b is determined:

• If an implicit conversion from the type of b to bool exists, then this implicit conversion is performed to
produce a bool value.

• Otherwise, the operator true defined by the type of b is invoked to produce a bool value.

• If the bool value produced by the step above is true, then x is evaluated and converted to the type of the
conditional expression, and this becomes the result of the conditional expression.

• Otherwise, y is evaluated and converted to the type of the conditional expression, and this becomes the
result of the conditional expression.

7.13 Assignment operators
The assignment operators assign a new value to a variable, a property, or an indexer element.

assignment:
unary-expression assignment-operator expression

C# LANGUAGE REFERENCE

128 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

assignment-operator: one of
= += -= *= /= %= &= |= ^= <<= >>=

The left operand of an assignment must be an expression classified as a variable, a property access, or an
indexer access.

The = operator is called the simple assignment operator. It assigns the value of the right operand to the variable,
property, or indexer element given by the left operand. The simple assignment operator is described in §7.13.1.

The operators formed by prefixing a binary operator with an = character are called the compound assignment
operators. These operators perform the indicated operation on the two operands, and then assign the resulting
value to the variable, property, or indexer element given by the left operand. The compound assignment
operators are described in §7.13.2.

The assignment operators are right-associative, meaning that operations are grouped from right to left. For
example, an expression of the form a = b = c is evaluated as a = (b = c).

7.13.1 Simple assignment
The = operator is called the simple assignment operator. In a simple assignment, the right operand must be an
expression of a type that is implicitly convertible to the type of the left operand. The operation assigns the value
of the right operand to the variable, property, or indexer element given by the left operand.

The result of a simple assignment expression is the value assigned to the left operand. The result has the same
type as the left operand and is always classified as a value.

If the left operand is a property or indexer access, the property or indexer must have a set accessor. If this is not
the case, a compile-time error occurs.

The run-time processing of a simple assignment of the form x = y consists of the following steps:

• If x is classified as a variable:

• x is evaluated to produce the variable.

• y is evaluated and, if required, converted to the type of x through an implicit conversion (§6.1).

• If the variable given by x is an array element of a reference-type, a run-time check is performed to
ensure that the value computed for y is compatible with the array instance of which x is an element. The
check succeeds if y is null, or if an implicit reference conversion (§6.1.4) exists from the actual type of
the instance referenced by y to the actual element type of the array instance containing x. Otherwise, an
ArrayTypeMismatchException is thrown.

• The value resulting from the evaluation and conversion of y is stored into the location given by the
evaluation of x.

• If x is classified as a property or indexer access:

• The instance expression (if x is not static) and the argument list (if x is an indexer access) associated
with x are evaluated, and the results are used in the subsequent set accessor invocation.

• y is evaluated and, if required, converted to the type of x through an implicit conversion (§6.1).

• The set accessor of x is invoked with the value computed for y as its value argument.

The array co-variance rules (§12.5) permit a value of an array type A[] to be a reference to an instance of an
array type B[], provided an implicit reference conversion exists from B to A. Because of these rules, assignment
to an array element of a reference-type requires a run-time check to ensure that the value being assigned is
compatible with the array instance. In the example

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 129

string[] sa = new string[10];
object[] oa = sa;

oa[0] = null; // Ok
oa[1] = "Hello"; // Ok
oa[2] = new ArrayList(); // ArrayTypeMismatchException

the last assignment causes an ArrayTypeMismatchException to be thrown because an instance of
ArrayList cannot be stored in an element of a string[].

When a property or indexer declared in a struct-type is the target of an assignment, the instance expression
associated with the property or indexer access must be classified as a variable. If the instance expression is
classified as a value, a compile-time error occurs.

Given the declarations:

struct Point
{

int x, y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}

public int X {
get { return x; }
set { x = value; }

}

public int Y {
get { return y; }
set { y = value; }

}
}

struct Rectangle
{

Point a, b;

public Rectangle(Point a, Point b) {
this.a = a;
this.b = b;

}

public Point A {
get { return a; }
set { a = value; }

}

public Point B {
get { return b; }
set { b = value; }

}
}

in the example

Point p = new Point();
p.X = 100;
p.Y = 100;
Rectangle r = new Rectangle();
r.A = new Point(10, 10);
r.B = p;

the assignments to p.X, p.Y, r.A , and r.B are permitted because p and r are variables. However, in the
example

C# LANGUAGE REFERENCE

130 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Rectangle r = new Rectangle();
r.A.X = 10;
r.A.Y = 10;
r.B.X = 100;
r.B.Y = 100;

the assignments are all invalid, since r.A and r.B are not variables.

7.13.2 Compound assignment
An operation of the form x op= y is processed by applying binary operator overload resolution (§7.2.4) as if the
operation was written x op y. Then,

• If the return type of the selected operator is implicitly convertible to the type of x, the operation is evaluated
as x = x op y, except that x is evaluated only once.

• Otherwise, if the selected operator is a predefined operator, if the return type of the selected operator is
explicitly convertible to the type of x, and if y is implicitly convertible to the type of x, then the operation is
evaluated as x = (T)(x op y), where T is the type of x, except that x is evaluated only once.

• Otherwise, the compound assignment is invalid, and a compile-time error occurs.

The term “evaluated only once” means that in the evaluation of x op y, the results of any constituent expressions
of x are temporarily saved and then reused when performing the assignment to x. For example, in the
assignment A()[B()] += C(), where A is a method returning int[] , and B and C are methods returning int,
the methods are invoked only once, in the order A, B, C.

When the left operand of a compound assignment is a property access or indexer access, the property or indexer
must have both a get accessor and a set accessor. If this is not the case, a compile-time error occurs.

The second rule above permits x op= y to be evaluated as x = (T)(x op y) in certain contexts. The rule exists
such that the predefined operators can be used as compound operators when the left operand is of type sbyte,
byte, short, ushort , or char. Even when both arguments are of one of those types, the predefined operators
produce a result of type int, as described in §7.2.6.2. Thus, without a cast it would not be possible to assign the
result to the left operand.

The intuitive effect of the rule for predefined operators is simply that x op= y is permitted if both of x op y and
x = y are permitted. In the example

byte b = 0;
char ch = '\0';
int i = 0;

b += 1; // Ok
b += 1000; // Error, b = 1000 not permitted
b += i; // Error, b = i not permitted
b += (byte)i; // Ok

ch += 1; // Error, ch = 1 not permitted
ch += (char)1; // Ok

the intuitive reason for each error is that a corresponding simple assignment would also have been an error.

7.13.3 Event assignment

7.14 Expression
An expression is either a conditional-expression or an assignment.

Chapter 7 Expressions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 131

expression:
conditional-expression
assignment

7.15 Constant expressions
A constant-expression is an expression that can be fully evaluated at compile-time.

constant-expression:
expression

The type of a constant expression can be one of the following: sbyte , byte , short, ushort , int, uint ,
long, ulong, char , float, double , decimal , bool, string , any enumeration type, or the null type. The
following constructs are permitted in constant expressions:

• Literals (including the null literal).

• References to const members of class and struct types.

• References to members of enumeration types.

• Parenthesized sub-expressions.

• Cast expressions, provided the target type is one of the types listed above.

• The predefined +, –, !, and ~ unary operators.

• The predefined +, –, *, / , %, << , >>, &, | , ^, &&, || , ==, != , <, >, <= , and => binary operators, provided
each operand is of a type listed above.

• The ?: conditional operator.

Whenever an expression is of one of the types listed above and contains only the constructs listed above, the
expression is evaluated at compile-time. This is true even if the expression is a sub-expression of a larger
expression that contains non-constant constructs.

The compile-time evaluation of constant expressions uses the same rules as run-time evaluation of non-constant
expressions, except that where run-time evaluation would have thrown an exception, compile-time evaluation
causes a compile-time error to occur.

Unless a constant expression is explicitly placed in an unchecked context, overflows that occur in integral-type
arithmetic operations and conversions during the compile-time evaluation of the expression always cause
compile-time errors (§7.5.13).

Constant expressions occur in the contexts listed below. In these contexts, an error occurs if an expression
cannot be fully evaluated at compile-time.

• Constant declarations (§10.3).

• Enumeration member declarations (§14.2).

• case labels of a switch statement (§8.7.2).

• goto case statements (§8.9.3).

• Attributes (§17).

An implicit constant expression conversion (§6.1.6) permits a constant expression of type int to be converted
to sbyte, byte, short , ushort , uint, or ulong, provided the value of the constant expression is within the
range of the destination type.

C# LANGUAGE REFERENCE

132 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

7.16 Boolean expressions
A boolean-expression is an expression that yields a result of type bool.

boolean-expression:
expression

The controlling conditional expression of an if-statement (§8.7.1), while-statement (§8.8.1), do-statement
(§8.8.2), or for-statement (§8.8.3) is a boolean-expression. The controlling conditional expression of the ?:
operator (§7.12) follows the same rules as a boolean-expression, but for reasons of operator precedence is
classified as a conditional-or-expression.

A boolean-expression is required to be of a type that can be implicitly converted to bool or of a type that
implements operator true. If neither of these requirements are satisfied, a compile-time error occurs.

When a boolean expression is of a type that cannot be implicitly converted to bool but does implement
operator true, then following evaluation of the expression, the operator true implementation provided by
the type is invoked to produce a bool value.

The DBBool struct type in §11.3.2 provides an example of a type that implements operator true.

Chapter 8 Statements

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 133

8. Statements

C# provides a variety of statements. Most of these statements will be familiar to developers who have
programmed in C and C++.

statement:
labeled-statement
declaration-statement
embedded-statement

embedded-statement:
block
empty-statement
expression-statement
selection-statement
iteration-statement
jump-statement
try-statement
checked-statement
unchecked-statement
lock-statement

The embedded-statement nonterminal is used for statements that appear within other statements. The use of
embedded-statement rather than statement excludes the use of declaration statements and labeled statements in
these contexts. For example, the code

void F(bool b) {
if (b)

int i = 44;
}

is in error because an if statement requires an embedded-statement rather than a statement for its if branch. If
this code were permitted, then the variable i would be declared, but it could never be used.

8.1 End points and reachability
Every statement has an end point. In intuitive terms, the end point of a statement is the location that immediately
follows the statement. The execution rules for composite statements (statements that contain embedded
statements) specify the action that is taken when control reaches the end point of an embedded statement. For
example, when control reaches the end point of a statement in a block, control is transferred to the next
statement in the block.

If a statement can possibly be reached by execution, the statement is said to be reachable . Conversely, if there is
no possibility that a statement will be executed, the statement is said to be unreachable.

In the example

void F() {
Console.WriteLine("reachable");
goto Label;
Console.WriteLine("unreachable");
Label:
Console.WriteLine("reachable");

}

C# LANGUAGE REFERENCE

134 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

the second Console.WriteLine invocation is unreachable because there is no possibility that the statement
will be executed.

A warning is reported if the compiler determines that a statement is unreachable. It is specifically not an error
for a statement to be unreachable.

To determine whether a particular statement or end point is reachable, the compiler performs flow analysis
according to the reachability rules defined for each statement. The flow analysis takes into account the values of
constant expressions (§7.15) that control the behavior of statements, but the possible values of non-constant
expressions are not considered. In other words, for purposes of control flow analysis, a non-constant expression
of a given type is considered to have any possible value of that type.

In the example

void F() {
const int i = 1;
if (i == 2) Console.WriteLine("unreachable");

}

the boolean expression of the if statement is a constant expression because both operands of the == operator are
constants. The constant expression is evaluated at compile-time, producing the value false, and the
Console.WriteLine invocation is therefore considered unreachable. However, if i is changed to be a local
variable

void F() {
int i = 1;
if (i == 2) Console.WriteLine("reachable");

}

the Console.WriteLine invocation is considered reachable, even though it will in reality never be executed.

The block of a function member is always considered reachable. By successively evaluating the reachability
rules of each statement in a block, the reachability of any given statement can be determined.

In the example

Void F(int x) {
Console.WriteLine("start");
if (x < 0) Console.WriteLine("negative");

}

the reachability of the second Console.WriteLine is determined as follows:

• First, because the block of the F method is reachable, the first Console.WriteLine statement is reachable.

• Next, because the first Console.WriteLine statement is reachable, its end point is reachable.

• Next, because the end point of the first Console.WriteLine statement is reachable, the if statement is
reachable.

• Finally, because the boolean expression of the if statement does not have the constant value false, the
second Console.WriteLine statement is reachable.

There are two situations in which it is an error for the end point of a statement to be reachable:

• Because the switch statement does not permit a switch section to “fall through” to the next switch section,
it is an error for the end point of the statement list of a switch section to be reachable. If this error occurs, it
is typically an indication that a break statement is missing.

• It is an error for the end point of the block of a function member that computes a value to be reachable. If
this error occurs, it is typically an indication that a return statement is missing.

Chapter 8 Statements

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 135

8.2 Blocks
A block permits multiple statements to be written in contexts where a single statement is expected.

block:
{ statement-listopt }

A block consists of an optional statement-list (§8.2.1), enclosed in braces. If the statement list is omitted, the
block is said to be empty.

A block may contain declaration statements (§8.5). The scope of a local variable or constant declared in a block
extends from the declaration to the end of the block.

Within a block, the meaning of a name used in an expression context must always be the same (§7.5.2.1).

A block is executed as follows:

• If the block is empty, control is transferred to the end point of the block.

• If the block is not empty, control is transferred to the statement list. When and if control reaches the end
point of the statement list, control is transferred to the end point of the block.

The statement list of a block is reachable if the block itself is reachable.

The end point of a block is reachable if the block is empty or if the end point of the statement list is reachable.

8.2.1 Statement lists
A statement list consists of one or more statements written in sequence. Statement lists occur in blocks (§8.2)
and in switch-blocks (§8.7.2).

statement-list:
statement
statement-list statement

A statement list is executed by transferring control to the first statement. When and if control reaches the end
point of a statement, control is transferred to the next statement. When and if control reaches the end point of the
last statement, control is transferred to the end point of the statement list.

A statement in a statement list is reachable if at least one of the following is true:

• The statement is the first statement and the statement list itself is reachable.

• The end point of the preceding statement is reachable.

• The statement is a labeled statement and the label is referenced by a reachable goto statement.

The end point of a statement list is reachable if the end point of the last statement in the list is reachable.

8.3 The empty statement
An empty-statement does nothing.

empty-statement:
;

An empty statement is used when there are no operations to perform in a context where a statement is required.

Execution of an empty statement simply transfers control to the end point of the statement. Thus, the end point
of an empty statement is reachable if the empty statement is reachable.

An empty statement can be used when writing a while statement with a null body:

C# LANGUAGE REFERENCE

136 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

bool ProcessMessage() {...}

void ProcessMessages() {
while (ProcessMessage());

}

Also, an empty statement can be used to declare a label just before the closing “}” of a block:

void F() {
...

if (done) goto exit;
...

exit: ;
}

8.4 Labeled statements
A labeled-statement permits a statement to be prefixed by a label. Labeled statements are permitted blocks, but
are not permitted as embedded statements.

labeled-statement:
identifier : statement

A labeled statement declares a label with the name given by the identifier. The scope of a label is the block in
which the label is declared, including any nested blocks. It is an error for two labels with the same name to have
overlapping scopes.

A label can be referenced from goto statements (§8.9.3) within the scope of the label. This means that goto
statements can transfer control inside blocks and out of blocks, but never into blocks.

Labels have their own declaration space and do not interfere with other identifiers. The example

int F(int x) {
if (x >= 0) goto x;
x = -x;
x: return x;

}

is valid and uses the name x as both a parameter and a label.

Execution of a labeled statement corresponds exactly to execution of the statement following the label.

In addition to the reachability provided by normal flow of control, a labeled statement is reachable if the label is
referenced by a reachable goto statement.

8.5 Declaration statements
A declaration-statement declares a local variable or constant. Declaration statements are permitted in blocks, but
are not permitted as embedded statements.

declaration-statement:
local-variable-declaration ;
local-constant-declaration ;

8.5.1 Local variable declarations
A local-variable-declaration declares one or more local variables.

local-variable-declaration:
type variable-declarators

Chapter 8 Statements

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 137

variable-declarators:
variable-declarator
variable-declarators , variable-declarator

variable-declarator:
identifier
identifier = variable-initializer

variable-initializer:
expression
array-initializer

The type of a local-variable-declaration specifies the type of the variables introduced by the declaration. The
type is followed by a list of variable-declarators, each of which introduces a new variable. A variable-
declarator consists of an identifier that names the variable, optionally followed by an “=” token and a variable-
initializer that gives the initial value of the variable.

The value of a local variable is obtained in an expression using a simple-name (§7.5.2), and the value of a local
variable is modified using an assignment (§7.13). A local variable must be definitely assigned (§5.3) at each
location where its value is obtained.

The scope of a local variable starts immediately after its identifier in the declaration and extends to the end of
the block containing the declaration. Within the scope of a local variable, it is an error to declare another local
variable or constant with the same name.

A local variable declaration that declares multiple variables is equivalent to multiple declarations of single
variables with the same type. Furthermore, a variable initializer in a local variable declaration corresponds
exactly to an assignment statement that is inserted immediately after the declaration.

The example

void F() {
int x = 1, y, z = x * 2;

}

corresponds exactly to

void F() {
int x; x = 1;
int y;
int z; z = x * 2;

}

8.5.2 Local constant declarations
A local-constant-declaration declares one or more local constants.

local-constant-declaration:
const type constant-declarators

constant-declarators:
constant-declarator
constant-declarators , constant-declarator

constant-declarator:
identifier = constant-expression

The type of a local-constant-declaration specifies the type of the constants introduced by the declaration. The
type is followed by a list of constant-declarators, each of which introduces a new constant. A constant-
declarator consists of an identifier that names the constant, followed by an “=” token, followed by a constant-
expression (§7.15) that gives the value of the constant.

C# LANGUAGE REFERENCE

138 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The type and constant-expression of a local constant declaration must follow the same rules as those of a
constant member declaration (§10.3).

The value of a local constant is obtained in an expression using a simple-name (§7.5.2).

The scope of a local constant extends from its declaration to the end of the block containing the declaration. The
scope of a local constant does not include the constant-expression that provides its value. Within the scope of a
local constant, it is an error to declare another local variable or constant with the same name.

8.6 Expression statements
An expression-statement evaluates a given expression. The value computed by the expression, if any, is
discarded.

expression-statement:
statement-expression ;

statement-expression:
invocation-expression
object-creation-expression
assignment
post-increment-expression
post-decrement-expression
pre-increment-expression
pre-decrement-expression

Not all expressions are permitted as statements. In particular, expressions such as x + y and x == 1 that have no
side-effects, but merely compute a value (which will be discarded), are not permitted as statements.

Execution of an expression statement evaluates the contained expression and then transfers control to the end
point of the expression statement.

8.7 Selection statements
Selection statements select one of a number of possible statements for execution based on the value of a
controlling expression.

selection-statement:
if-statement
switch-statement

8.7.1 The if statement
The if statement selects a statement for execution based on the value of a boolean expression.

if-statement:
if (boolean-expression) embedded-statement
if (boolean-expression) embedded-statement else embedded-statement

boolean-expression:
expression

An else part is associated with the nearest preceding if statement that does not already have an else part.
Thus, an if statement of the form

if (x) if (y) F(); else G();

is equivalent to

Chapter 8 Statements

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 139

if (x) {
if (y) {

F();
}
else {

G();
}

}

An if statement is executed as follows:

• The boolean-expression (§7.16) is evaluated.

• If the boolean expression yields true, control is transferred to the first embedded statement. When and if
control reaches the end point of that statement, control is transferred to the end point of the if statement.

• If the boolean expression yields false and if an else part is present, control is transferred to the second
embedded statement. When and if control reaches the end point of that statement, control is transferred to
the end point of the if statement.

• If the boolean expression yields false and if an else part is not present, control is transferred to the end
point of the if statement.

The first embedded statement of an if statement is reachable if the if statement is reachable and the boolean
expression does not have the constant value false.

The second embedded statement of an if statement, if present, is reachable if the if statement is reachable and
the boolean expression does not have the constant value true.

The end point of an if statement is reachable if the end point of at least one of its embedded statements is
reachable. In addition, the end point of an if statement with no else part is reachable if the if statement is
reachable and the boolean expression does not have the constant value true.

8.7.2 The switch statement
The switch statement executes the statements that are associated with the value of the controlling expression.

switch-statement:
switch (expression) switch-block

switch-block:
{ switch-sectionsopt }

switch-sections:
switch-section
switch-sections switch-section

switch-section:
switch-labels statement-list

switch-labels:
switch-label
switch-labels switch-label

switch-label:
case constant-expression :
default :

A switch-statement consists of the keyword switch, followed by a parenthesized expression (called the switch
expression), followed by a switch-block. The switch-block consists of zero or more switch-sections, enclosed in
braces. Each switch-section consists of one or more switch-labels followed by a statement-list (§8.2.1).

C# LANGUAGE REFERENCE

140 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The governing type of a switch statement is established by the switch expression. If the type of the switch
expression is sbyte, byte, short , ushort, int , uint, long , ulong, char , string, or an enum-type, then
that is the governing type of the switch statement. Otherwise, exactly one user-defined implicit conversion
(§6.4) must exist from the type of the switch expression to one of the following possible governing types:
sbyte, byte, short , ushort, int , uint, long , ulong, char , string. If no such implicit conversion exists,
or if more that one such implicit conversion exists, a compile-time error occurs.

The constant expression of each case label must denote a value of a type that is implicitly convertible (§6.1) to
the governing type of the switch statement. A compile-time error occurs if an two or more case labels in the
same switch statement specify the same constant value.

There can be at most one default label in a switch statement.

A switch statement is executed as follows:

• The switch expression is evaluated and converted to the governing type.

• If one of the constants specified in a case label is equal to the value of the switch expression, control is
transferred to the statement list following the matched case label.

• If no constant matches the value of the switch expression and if a default label is present, control is
transferred to the statement list following the default label.

• If no constant matches the value of the switch expression and if no default label is present, control is
transferred to the end point of the switch statement.

If the end point of the statement list of a switch section is reachable, a compile-time error occurs. This is known
as the “no fall through” rule. The example

switch (i) {
case 0:

CaseZero();
break;

case 1:
CaseOne();
break;

default:
CaseOthers();
break;

}

is valid because no switch section has a reachable end point. Unlike C and C++, execution of a switch section is
not permitted to “fall through” to the next switch section, and the example

switch (i) {
case 0:

CaseZero();
case 1:

CaseZeroOrOne();
default:

CaseAny();
}

is in error. When execution of a switch section is to be followed by execution of another switch section, an
explicit goto case or goto default statement must be used:

Chapter 8 Statements

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 141

switch (i) {
case 0:

CaseZero();
goto case 1;

case 1:
CaseZeroOrOne();
goto default;

default:
CaseAny();
break;

}

Multiple labels are permitted in a switch-section. The example

switch (i) {
case 0:

CaseZero();
break;

case 1:
CaseOne();
break;

case 2:
default:

CaseTwo();
break;

}

is legal. The example does not violate the "no fall through" rule because the labels case 2: and default: are
part of the same switch-section.

The “no fall through” rule prevents a common class of bugs that occur in C and C++ when break statements
are accidentally omitted. Also, because of this rule, the switch sections of a switch statement can be arbitrarily
rearranged without affecting the behavior of the statement. For example, the sections of the switch statement
above can be reversed without affecting the behavior of the statement:

switch (i) {
default:

CaseAny();
break;

case 1:
CaseZeroOrOne();
goto default;

case 0:
CaseZero();
goto case 1;

}

The statement list of a switch section typically ends in a break, goto case, or goto default statement, but
any construct that renders the end point of the statement list unreachable is permitted. For example, a while
statement controlled by the boolean expression true is known to never reach its end point. Likewise, a throw
or return statement always transfer control elsewhere and never reaches its end point. Thus, the following
example is valid:

switch (i) {
case 0:

while (true) F();
case 1:

throw new ArgumentException();
case 2:

return;
}

The governing type of a switch statement may be the type string. For example:

C# LANGUAGE REFERENCE

142 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

void DoCommand(string command) {
switch (command.ToLower()) {
case "run":

DoRun();
break;

case "save":
DoSave();
break;

case "quit":
DoQuit();
break;

default:
InvalidCommand(command);
break;

}
}

Like the string equality operators (§7.9.7), the switch statement is case sensitive and will execute a given
switch section only if the switch expression string exactly matches a case label constant. As illustrated by the
example above, a switch statement can be made case insensitive by converting the switch expression string to
lower case and writing all case label constants in lower case.

When the governing type of a switch statement is string, the value null is permitted as a case label
constant.

A switch-block may contain declaration statements (§8.5). The scope of a local variable or constant declared in a
switch block extends from the declaration to the end of the switch block.

Within a switch block, the meaning of a name used in an expression context must always be the same (§7.5.2.1).

The statement list of a given switch section is reachable if the switch statement is reachable and at least one of
the following is true:

• The switch expression is a non-constant value.

• The switch expression is a constant value that matches a case label in the switch section.

• The switch expression is a constant value that doesn’t match any case label, and the switch section contains
the default label.

• A switch label of the switch section is referenced by a reachable goto case or goto default statement.

The end point of a switch statement is reachable if at least one of the following is true:

• The switch statement contains a reachable break statement that exits the switch statement.

• The switch statement is reachable, the switch expression is a non-constant value, and no default label is
present.

• The switch statement is reachable, the switch expression is a constant value that doesn’t match any case
label, and no default label is present.

8.8 Iteration statements
Iteration statements repeatedly execute an embedded statement.

iteration-statement:
while-statement
do-statement
for-statement
foreach-statement

Chapter 8 Statements

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 143

8.8.1 The while statement
The while statement conditionally executes an embedded statement zero or more times.

while-statement:
while (boolean-expression) embedded-statement

A while statement is executed as follows:

• The boolean-expression (§7.16) is evaluated.

• If the boolean expression yields true, control is transferred to the embedded statement. When and if control
reaches the end point of the embedded statement (possibly from execution of a continue statement),
control is transferred to the beginning of the while statement.

• If the boolean expression yields false, control is transferred to the end point of the while statement.

Within the embedded statement of a while statement, a break statement (§8.9.1) may be used to transfer
control to the end point of the while statement (thus ending iteration of the embedded statement), and a
continue statement (§8.9.2) may be used to transfer control to the end point of the embedded statement (thus
performing another iteration of the while statement).

The embedded statement of a while statement is reachable if the while statement is reachable and the boolean
expression does not have the constant value false.

The end point of a while statement is reachable if at least one of the following is true:

• The while statement contains a reachable break statement that exits the while statement.

• The while statement is reachable and the boolean expression does not have the constant value true.

8.8.2 The do statement
The do statement conditionally executes an embedded statement one or more times.

do-statement:
do embedded-statement while (boolean-expression) ;

A do statement is executed as follows:

• Control is transferred to the embedded statement.

• When and if control reaches the end point of the embedded statement (possibly from execution of a
continue statement), the boolean-expression (§7.16) is evaluated. If the boolean expression yields true,
control is transferred to the beginning of the do statement. Otherwise, control is transferred to the end point
of the do statement.

Within the embedded statement of a do statement, a break statement (§8.9.1) may be used to transfer control to
the end point of the do statement (thus ending iteration of the embedded statement), and a continue statement
(§8.9.2) may be used to transfer control to the end point of the embedded statement (thus performing another
iteration of the do statement).

The embedded statement of a do statement is reachable if the do statement is reachable.

The end point of a do statement is reachable if at least one of the following is true:

• The do statement contains a reachable break statement that exits the do statement.

• The end point of the embedded statement is reachable and the boolean expression does not have the constant
value true.

C# LANGUAGE REFERENCE

144 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

8.8.3 The for statement
The for statement evaluates a sequence of initialization expressions and then, while a condition is true,
repeatedly executes an embedded statement and evaluates a sequence of iteration expressions.

for-statement:
for (for-initializeropt ; for-conditionopt ; for-iteratoropt) embedded-statement

for-initializer:
local-variable-declaration
statement-expression-list

for-condition:
boolean-expression

for-iterator:
statement-expression-list

statement-expression-list:
statement-expression
statement-expression-list , statement-expression

The for-initializer, if present, consists of either a local-variable-declaration (§8.5.1) or a list of statement-
expressions (§8.6) separated by commas. The scope of a local variable declared by a for-initializer starts at the
variable-declarator for the variable and extends to the end of the embedded statement. The scope includes the
for-condition and the for-iterator.

The for-condition, if present, must be a boolean-expression (§7.16).

The for-iterator, if present, consists of a list of statement-expressions (§8.6) separated by commas.

A for statement is executed as follows:

• If a for-initializer is present, the variable initializers or statement expressions are executed in the order they
are written. This step is only performed once.

• If a for-condition is present, it is evaluated.

• If the for-condition is not present or if the evaluation yields true , control is transferred to the embedded
statement. When and if control reaches the end point of the embedded statement (possibly from execution of
a continue statement), the expressions of the for-iterator, if any, are evaluated in sequence, and then
another iteration is performed, starting with evaluation of the for-condition in the step above.

• If the for-condition is present and the evaluation yields false, control is transferred to the end point of the
for statement.

Within the embedded statement of a for statement, a break statement (§8.9.1) may be used to transfer control
to the end point of the for statement (thus ending iteration of the embedded statement), and a continue
statement (§8.9.2) may be used to transfer control to the end point of the embedded statement (thus executing
another iteration of the for statement).

The embedded statement of a for statement is reachable if one of the following is true:

• The for statement is reachable and no for-condition is present.

• The for statement is reachable and a for-condition is present and does not have the constant value false.

The end point of a for statement is reachable if at least one of the following is true:

• The for statement contains a reachable break statement that exits the for statement.

• The for statement is reachable and a for-condition is present and does not have the constant value true.

Chapter 8 Statements

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 145

8.8.4 The foreach statement
The foreach statement enumerates the elements of a collection, executing an embedded statement for each
element of the collection.

foreach-statement:
foreach (type identifier in expression) embedded-statement

The type and identifier of a foreach statement declare the iteration variable of the statement. The iteration
variable corresponds to a read-only local variable with a scope that extends over the embedded statement.
During execution of a foreach statement, the iteration variable represents the collection element for which an
iteration is currently being performed. A compile-time error occurs if the embedded statement attempts to assign
to the iteration variable or pass the iteration variable as a ref or out parameter.

The type of the expression of a foreach statement must be a collection type (as defined below), and an explicit
conversion (§6.2) must exist from the element type of the collection to the type of the iteration variable.

A type C is said to be a collection type if all of the following are true:

• C contains a public instance method with the signature GetEnumerator() that returns a struct-type,
class-type, or interface-type, in the following called E.

• E contains a public instance method with the signature MoveNext() and the return type bool.

• E contains a public instance property named Current that permits reading. The type of this property is
said to be the element type of the collection type.

The System.Array type (§12.1.1) is a collection type, and since all array types derive from System.Array,
any array type expression is permitted in a foreach statement. For single-dimensional arrays, the foreach
statement enumerates the array elements in increasing index order, starting with index 0 and ending with index
Length – 1. For multi-dimensional arrays, the indices of the rightmost dimension are increased first.

A foreach statement is executed as follows:

• The collection expression is evaluated to produce an instance of the collection type. This instance is referred
to as c in the following. If c is of a reference-type and has the value null, a NullReferenceException
is thrown.

• An enumerator instance is obtained by evaluating the method invocation c.GetEnumerator(). The
returned enumerator is stored in a temporary local variable, in the following referred to as e. It is not
possible for the embedded statement to access this temporary variable. If e is of a reference-type and has the
value null, a NullReferenceException is thrown.

• The enumerator is advanced to the next element by evaluating the method invocation e.MoveNext().

• If the value returned by e.MoveNext() is true, the following steps are performed:

• The current enumerator value is obtained by evaluating the property access e.Current, and the value
is converted to the type of the iteration variable by an explicit conversion (§6.2). The resulting value is
stored in the iteration variable such that it can be accessed in the embedded statement.

• Control is transferred to the embedded statement. When and if control reaches the end point of the
embedded statement (possibly from execution of a continue statement), another foreach iteration is
performed, starting with the step above that advances the enumerator.

• If the value returned by e.MoveNext() is false, control is transferred to the end point of the foreach
statement.

Within the embedded statement of a foreach statement, a break statement (§8.9.1) may be used to transfer
control to the end point of the foreach statement (thus ending iteration of the embedded statement), and a

C# LANGUAGE REFERENCE

146 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

continue statement (§8.9.2) may be used to transfer control to the end point of the embedded statement (thus
executing another iteration of the foreach statement).

The embedded statement of a foreach statement is reachable if the foreach statement is reachable. Likewise,
the end point of a foreach statement is reachable if the foreach statement is reachable.

8.9 Jump statements
Jump statements unconditionally transfer control.

jump-statement:
break-statement
continue-statement
goto-statement
return-statement
throw-statement

The location to which a jump statement transfers control is called the target of the jump statement.

When a jump statement occurs within a block, and when the target of the jump statement is outside that block,
the jump statement is said to exit the block. While a jump statement may transfer control out of a block, it can
never transfer control into a block.

Execution of jump statements is complicated by the presence of intervening try statements. In the absence of
such try statements, a jump statement unconditionally transfers control from the jump statement to its target. In
the presence of such intervening try statements, execution is more complex. If the jump statement exits one or
more try blocks with associated finally blocks, control is initially transferred to the finally block of the
innermost try statement. When and if control reaches the end point of a finally block, control is transferred
to the finally block of the next enclosing try statement. This process is repeated until the finally blocks of
all intervening try statements have been executed.

In the example

static void F() {
while (true) {

try {
try {

Console.WriteLine("Before break");
break;

}
finally {

Console.WriteLine("Innermost finally block");
}

}
finally {

Console.WriteLine("Outermost finally block");
}

}
Console.WriteLine("After break");

}

the finally blocks associated with two try statements are executed before control is transferred to the target of the
jump statement.

8.9.1 The break statement
The break statement exits the nearest enclosing switch, while , do, for , or foreach statement.

break-statement:
break ;

Chapter 8 Statements

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 147

The target of a break statement is the end point of the nearest enclosing switch , while, do , for, or foreach
statement. If a break statement is not enclosed by a switch, while, do, for , or foreach statement, a
compile-time error occurs.

When multiple switch, while , do, for , or foreach statements are nested within each other, a break
statement applies only to the innermost statement. To transfer control across multiple nesting levels, a goto
statement (§8.9.3) must be used.

A break statement cannot exit a finally block (§8.10). When a break statement occurs within a finally
block, the target of the break statement must be within the same finally block, or otherwise a compile-time
error occurs.

A break statement is executed as follows:

• If the break statement exits one or more try blocks with associated finally blocks, control is initially
transferred to the finally block of the innermost try statement. When and if control reaches the end point
of a finally block, control is transferred to the finally block of the next enclosing try statement. This
process is repeated until the finally blocks of all intervening try statements have been executed.

• Control is transferred to the target of the break statement.

Because a break statement unconditionally transfers control elsewhere, the end point of a break statement is
never reachable.

8.9.2 The continue statement
The continue statement starts a new iteration of the nearest enclosing while, do , for, or foreach statement.

continue-statement:
continue ;

The target of a continue statement is the end point of the embedded statement of the nearest enclosing while,
do, for, or foreach statement. If a continue statement is not enclosed by a while, do, for, or foreach
statement, a compile-time error occurs.

When multiple while, do , for, or foreach statements are nested within each other, a continue statement
applies only to the innermost statement. To transfer control across multiple nesting levels, a goto statement
(§8.9.3) must be used.

A continue statement cannot exit a finally block (§8.10). When a continue statement occurs within a
finally block, the target of the continue statement must be within the same finally block, or otherwise a
compile-time error occurs.

A continue statement is executed as follows:

• If the continue statement exits one or more try blocks with associated finally blocks, control is
initially transferred to the finally block of the innermost try statement. When and if control reaches the
end point of a finally block, control is transferred to the finally block of the next enclosing try
statement. This process is repeated until the finally blocks of all intervening try statements have been
executed.

• Control is transferred to the target of the continue statement.

Because a continue statement unconditionally transfers control elsewhere, the end point of a continue
statement is never reachable.

8.9.3 The goto statement
The goto statement transfers control to a statement that is marked by a label.

C# LANGUAGE REFERENCE

148 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

goto-statement:
goto identifier ;
goto case constant-expression ;
goto default ;

The target of a goto identifier statement is the labeled statement with the given label. If a label with the given
name does not exist in the current function member, or if the goto statement is not within the scope of the label,
a compile-time error occurs.

The target of a goto case statement is the statement list of the switch section in the nearest enclosing switch
statement that contains a case label with the given constant value. If the goto case statement is not enclosed
by a switch statement, if the constant-expression is not implicitly convertible (§6.1) to the governing type of
the nearest enclosing switch statement, or if the nearest enclosing switch statement does not contain a case
label with the given constant value, a compile-time error occurs.

The target of a goto default statement is the statement list of the switch section in the nearest enclosing
switch statement (§8.7.2) that contains a default label. If the goto default statement is not enclosed by a
switch statement, or if the nearest enclosing switch statement does not contain a default label, a compile-
time error occurs.

A goto statement cannot exit a finally block (§8.10). When a goto statement occurs within a finally
block, the target of the goto statement must be within the same finally block, or otherwise a compile-time
error occurs.

A goto statement is executed as follows:

• If the goto statement exits one or more try blocks with associated finally blocks, control is initially
transferred to the finally block of the innermost try statement. When and if control reaches the end point
of a finally block, control is transferred to the finally block of the next enclosing try statement. This
process is repeated until the finally blocks of all intervening try statements have been executed.

• Control is transferred to the target of the goto statement.

Because a goto statement unconditionally transfers control elsewhere, the end point of a goto statement is
never reachable.

8.9.4 The return statement
The return statement returns control to the caller of the function member in which the return statement
appears.

return-statement:
return expressionopt ;

A return statement with no expression can be used only in a function member that does not compute a value,
that is, a method with the return type void, the set accessor of a property or indexer, a constructor, or a
destructor.

A return statement with an expression can only be used only in a function member that computes a value, that
is, a method with a non-void return type, the get accessor of a property or indexer, or a user-defined operator.
An implicit conversion (§6.1) must exist from the type of the expression to the return type of the containing
function member.

It is an error for a return statement to appear in a finally block (§8.10).

A return statement is executed as follows:

Chapter 8 Statements

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 149

• If the return statement specifies an expression, the expression is evaluated and the resulting value is
converted to the return type of the containing function member by an implicit conversion. The result of the
conversion becomes the value returned to the caller.

• If the return statement is enclosed by one or more try blocks with associated finally blocks, control is
initially transferred to the finally block of the innermost try statement. When and if control reaches the
end point of a finally block, control is transferred to the finally block of the next enclosing try
statement. This process is repeated until the finally blocks of all enclosing try statements have been
executed.

• Control is returned to the caller of the containing function member.

Because a return statement unconditionally transfers control elsewhere, the end point of a return statement
is never reachable.

8.9.5 The throw statement
The throw statement throws an exception.

throw-statement:
throw expressionopt ;

A throw statement with an expression throws the exception produced by evaluating the expression. The
expression must denote a value of the class type System.Exception or of a class type that derives from
System.Exception. If evaluation of the expression produces null, a NullReferenceException is thrown
instead.

A throw statement with no expression can be used only in a catch block. It re-throws the exception that is
currently being handled by the catch block.

Because a throw statement unconditionally transfers control elsewhere, the end point of a throw statement is
never reachable.

When an exception is thrown, control is transferred to the first catch clause in a try statement that can handle
the exception. The process that takes place from the point of the exception being thrown to the point of
transferring control to a suitable exception handler is known as exception propagation. Propagation of an
exception consists of repeatedly evaluating the following steps until a catch clause that matches the exception
is found. In the descriptions, the throw point is initially the location at which the exception is thrown.

• In the current function member, each try statement that encloses the throw point is examined. For each
statement S, starting with the innermost try statement and ending with the outermost try statement, the
following steps are evaluated:

• If the try block of S encloses the throw point and if S has one or more catch clauses, the catch
clauses are examined in order of appearance to locate a suitable handler for the exception. The first
catch clause that specifies the exception type or a base type of the exception type is considered a
match. A general catch clause is considered a match for any exception type. If a matching catch
clause is located, the exception propagation is completed by transferring control to the block of that
catch clause.

• Otherwise, if the try block or a catch block of S encloses the throw point and if S has a finally
block, control is transferred to the finally block. If the finally block throws another exception,
processing of the current exception is terminated. Otherwise, when control reaches the end point of the
finally block, processing of the current exception is continued.

C# LANGUAGE REFERENCE

150 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• If an exception handler was not located in the current function member invocation, the function member
invocation is terminated. The steps above are then repeated for the caller of the function member with a
throw point corresponding to the statement from which the function member was invoked.

• If the exception processing ends up terminating all function member invocations in the current thread or
process, indicating that the thread or process has no handler for the exception, then the tread or process is
itself terminated in an implementation defined fashion.

8.10 The try statement
The try statement provides a mechanism for catching exceptions that occur during execution of a block. The
try statement furthermore provides the ability to specify a block of code that is always executed when control
leaves the try statement.

try-statement:
try block catch-clauses
try block finally-clause
try block catch-clauses finally-clause

 catch-clauses:
specific-catch-clauses general-catch-clauseopt

specific-catch-clausesopt general-catch-clause

specific-catch-clauses:
specific-catch-clause
specific-catch-clauses specific-catch-clause

specific-catch-clause:
catch (class-type identifieropt) block

general-catch-clause:
catch block

finally-clause:
finally block

There are three possible forms of try statements:

• A try block followed by one or more catch blocks.

• A try block followed by a finally block.

• A try block followed by one or more catch blocks followed by a finally block.

When a catch clause specifies a class-type, the type must be System.Exception or a type that derives from
System.Exception.

When a catch clause specifies both a class-type and an identifier, an exception variable of the given name and
type is declared. The exception variable corresponds to a read-only local variable with a scope that extends over
the catch block. During execution of the catch block, the exception variable represents the exception
currently being handled. A compile-time error occurs if a catch block attempts to assign to the exception
variable or pass the exception variable as a ref or out parameter.

Unless a catch clause includes an exception variable name, it is impossible to access the exception object in the
catch block.

A catch clause that specifies neither an exception type nor an exception variable name is called a general
catch clause. A try statement can only have one general catch clause, and if one is present it must be the last
catch clause. A general catch clause of the form

Chapter 8 Statements

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 151

catch {...}

is precisely equivalent to

catch (System.Exception) {...}

An error occurs if a catch clause specifies a type that is equal to or derived from a type that was specified in an
earlier catch clause. Because catch clauses are examined in order of appearance to locate a handler for an
exception, without this restriction it would be possible to write unreachable catch clauses.

It is an error for a try statement to contain a general catch clause if the try statement also contains a catch
clause for the System.Exception type.

Within a catch block, a throw statement (§8.9.5) with no expression can be used to re-throw the exception that
is currently being handled by the catch block.

It is an error for a break, continue, or goto statement to transfer control out of a finally block. When a
break, continue, or goto statement occurs in a finally block, the target of the statement must be within
the same finally block, or otherwise a compile-time error occurs.

It is an error for a return statement to occur in a finally block.

A try statement is executed as follows:

• Control is transferred to the try block.

• When and if control reaches the end point of the try block:

• If the try statement has a finally block, the finally block is executed.

• Control is transferred to the end point of the try statement.

• If an exception is propagated to the try statement during execution of the try block:

• The catch clauses, if any, are examined in order of appearance to locate a suitable handler for the
exception. The first catch clause that specifies the exception type or a base type of the exception type
is considered a match. A general catch clause is considered a match for any exception type. If a
matching catch clause is located:

• If the matching catch clause declares an exception variable, the exception object is assigned to the
exception variable.

• Control is transferred to the matching catch block.

• When and if control reaches the end point of the catch block:

• If the try statement has a finally block, the finally block is executed.

• Control is transferred to the end point of the try statement.

• If an exception is propagated to the try statement during execution of the catch block:

• If the try statement has a finally block, the finally block is executed.

• The exception is propagated to the next enclosing try statement.

• If the try statement has no catch clauses or if no catch clause matches the exception:

• If the try statement has a finally block, the finally block is executed.

• The exception is propagated to the next enclosing try statement.

C# LANGUAGE REFERENCE

152 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The statements of a finally block are always executed when control leaves a try statement. This is true
whether the control transfer occurs as a result of normal execution, as a result of executing a break, continue ,
goto, or return statement, or as a result of propagating an exception out of the try statement.

If an exception is thrown during execution of a finally block, the exception is propagated to the next
enclosing try statement. If another exception was in the process of being propagated, that exception is lost. The
process of propagating an exception is further discussed in the description of the throw statement (§8.9.5).

The try block of a try statement is reachable if the try statement is reachable.

A catch block of a try statement is reachable if the try statement is reachable.

The finally block of a try statement is reachable if the try statement is reachable.

The end point of a try statement is reachable both of the following are true:

• The end point of the try block is reachable or the end point of at least one catch block is reachable.

• If a finally block is present, the end point of the finally block is reachable.

8.11 The checked and unchecked statements
The checked and unchecked statements are used to control the overflow checking context for integral-type
arithmetic operations and conversions.

checked-statement:
checked block

unchecked-statement:
unchecked block

The checked statement causes all expressions in the block to be evaluated in a checked context, and the
unchecked statement causes all expressions in the block to be evaluated in an unchecked context.

The checked and unchecked statements are precisely equivalent to the checked and unchecked operators
(§7.5.13), except that they operate on blocks instead of expressions.

8.12 The lock statement
The lock statement obtains the mutual-exclusion lock for a given object, executes a statement, and then
releases the lock.

lock-statement:
lock (expression) embedded-statement

The expression of a lock statement must denote a value of a reference-type. An implicit boxing conversion
(§6.1.5) is never performed for the expression of a lock statement, and thus it is an error for the expression to
denote a value of a value-type.

A lock statement of the form

lock (x) ...

where x is an expression of a reference-type, is precisely equivalent to

System.CriticalSection.Enter(x);
try {

...
}
finally {

System.CriticalSection.Exit(x);
}

Chapter 8 Statements

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 153

except that x is only evaluated once. The exact behavior of the Enter and Exit methods of the
System.CriticalSection class is implementation defined.

The System.Type object of a class can conveniently be used as the mutual-exclusion lock for static methods of
the class. For example:

class Cache
{

public static void Add(object x) {
lock (typeof(Cache)) {

...
}

}

public static void Remove(object x) {
lock (typeof(Cache)) {

...
}

}
}

Chapter 9 Namespaces

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 155

9. Namespaces

C# programs are organized using namespaces. Namespaces are used both as an “internal” organization system
for a program, and as an “external” organization system – a way of presenting program elements that are
exposed to other programs.

Using directives are provided to facilitate the use of namespaces.

9.1 Compilation units
A compilation-unit defines the overall structure of a source file. A compilation unit consists of zero or more
using-directives followed by zero or more namespace-member-declarations.

compilation-unit:
using-directivesopt namespace-member-declarationsopt

A C# program consists of one or more compilation units, each contained in a separate source file. When a C#
program is compiled, all of the compilation units are processed together. Thus, compilation units can depend on
each other, possibly in a circular fashion.

The using-directives of a compilation unit affect the namespace-member-declarations of that compilation unit,
but have no effect on other compilation units.

The namespace-member-declarations of each compilation unit of a program contribute members to a single
declaration space called the global namespace. For example:

File A.cs:

class A {}

File B.cs:

class B {}

The two compilation units contribute to the single global namespace, in this case declaring two classes with the
fully qualified names A and B. Because the two compilation units contribute to the same declaration space, it
would have been an error if each contained a declaration of a member with the same name.

9.2 Namespace declarations
A namespace-declaration consists of the keyword namespace, followed by a namespace name and body,
optionally followed by a semicolon.

namespace-declaration:
namespace qualified-identifier namespace-body ;opt

qualified-identifier:
identifier
qualified-identifier . identifier

namespace-body:
{ using-directivesopt namespace-member-declarationsopt }

A namespace-declaration may occur as a top-level declaration in a compilation-unit or as a member declaration
within another namespace-declaration. When a namespace-declaration occurs as a top-level declaration in a
compilation-unit, the namespace becomes a member of the global namespace. When a namespace-declaration

C# LANGUAGE REFERENCE

156 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

occurs within another namespace-declaration, the inner namespace becomes a member of the outer namespace.
In either case, the name of a namespace must be unique within the containing namespace.

Namespaces are implicitly public and the declaration of a namespace cannot include any access modifiers.

Within a namespace-body, the optional using-directives import the names of other namespaces and types,
allowing them to be referenced directly instead of through qualified names. The optional namespace-member-
declarations contribute members to the declaration space of the namespace. Note that all using-directives must
appear before any member declarations.

The qualified-identifier of a namespace-declaration may be single identifier or a sequence of identifiers
separated by “.” tokens. The latter form permits a program to define a nested namespace without lexically
nesting several namespace declarations. For example,

namespace N1.N2
{

class A {}

class B {}
}

is semantically equivalent to

namespace N1
{

namespace N2
{

class A {}

class B {}
}

}

Namespaces are open-ended, and two namespace declarations with the same fully qualified name contribute to
the same declaration space (§3.1). In the example

namespace N1.N2
{

class A {}
}

namespace N1.N2
{

class B {}
}

the two namespace declarations above contribute to the same declaration space, in this case declaring two
classes with the fully qualified names N1.N2.A and N1.N2.B. Because the two declarations contribute to the
same declaration space, it would have been an error if each contained a declaration of a member with the same
name.

9.3 Using directives
Using directives facilitate the use of namespaces and types defined in other namespaces. Using directives impact
the name resolution process of namespace-or-type-names (§3.6) and simple-names (§7.5.2), but unlike
declarations, using directives do not contribute new members to the underlying declaration spaces of the
compilation units or namespaces within which they are used.

using-directives:
using-directive
using-directives using-directive

Chapter 9 Namespaces

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 157

using-directive:
using-alias-directive
using-namespace-directive

A using-alias-directive (§9.3.1) introduces an alias for a namespace or type.

A using-namespace-directive (§9.3.2) imports the type members of a namespace.

The scope of a using-directive extends over the namespace-member-declarations of its immediately containing
compilation unit or namespace body. The scope of a using-directive specifically does not include its peer using-
directives. Thus, peer using-directives do not affect each other, and the order in which they are written is
insignificant.

9.3.1 Using alias directives
A using-alias-directive introduces an identifier that serves as an alias for a namespace or type within the
immediately enclosing compilation unit or namespace body.

using-alias-directive:
using identifier = namespace-or-type-name ;

Within member declarations in a compilation unit or namespace body that contains a using-alias-directive, the
identifier introduced by the using-alias-directive can be used to reference the given namespace or type. For
example:

namespace N1.N2
{

class A {}
}

namespace N3
{

using A = N1.N2.A;

class B: A {}
}

Here, within member declarations in the N3 namespace, A is an alias for N1.N2.A, and thus class N3.B derives
from class N1.N2.A. The same effect can be obtained by creating an alias R for N1.N2 and then referencing
R.A:

namespace N3
{

using R = N1.N2;

class B: R.A {}
}

The identifier of a using-alias-directive must be unique within the declaration space of the compilation unit or
namespace that immediately contains the using-alias-directive. For example:

namespace N3
{

class A {}
}

namespace N3
{

using A = N1.N2.A; // Error, A already exists
}

Here, N3 already contains a member A, so it is an error for a using-alias-directive to use that identifier. It is
likewise an error for two or more using-alias-directives in the same compilation unit or namespace body to
declare aliases by the same name.

C# LANGUAGE REFERENCE

158 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

A using-alias-directive makes an alias available within a particular compilation unit or namespace body, but it
does not contribute any new members to the underlying declaration space. In other words, a using-alias-
directive is not transitive but rather affects only the compilation unit or namespace body in which it occurs. In
the example

namespace N3
{

using R = N1.N2;
}

namespace N3
{

class B: R.A {} // Error, R unknown
}

the scope of the using-alias-directive that introduces R only extends to member declarations in the namespace
body in which it is contained, and R is thus unknown in the second namespace declaration. However, placing the
using-alias-directive in the containing compilation unit causes the alias to become available within both
namespace declarations:

using R = N1.N2;

namespace N3
{

class B: R.A {}
}

namespace N3
{

class C: R.A {}
}

Just like regular members, names introduced by using-alias-directives are hidden by similarly named members
in nested scopes. In the example

using R = N1.N2;

namespace N3
{

class R {}

class B: R.A {} // Error, R has no member A
}

the reference to R.A in the declaration of B causes an error because R refers to N3.F, not N1.N2.

The order in which using-alias-directives are written has no significance, and resolution of the namespace-or-
type-name referenced by a using-alias-directive is neither affected by the using-alias-directive itself nor by other
using-directives in the immediately containing compilation unit or namespace body. In other words, the
namespace-or-type-name of a using-alias-directive is resolved as if the immediately containing compilation unit
or namespace body had no using-directives. In the example

namespace N1.N2 {}

namespace N3
{

using R1 = N1; // OK

using R2 = N1.N2; // OK

using R3 = R1.N2; // Error, R1 unknown
}

the last using-alias-directive is in error because it is not affected by the first using-alias-directive.

Chapter 9 Namespaces

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 159

A using-alias-directive can create an alias for any namespace or type, including the namespace within which it
appears and any namespace or type nested within that namespace.

Accessing a namespace or type through an alias yields exactly the same result as accessing the namespace or
type through its declared name. In other words, given

namespace N1.N2
{

class A {}
}

namespace N3
{

using R1 = N1;
using R2 = N1.N2;

class B
{

N1.N2.A a; // refers to N1.N2.A
R1.N2.A b; // refers to N1.N2.A
R2.A c; // refers to N1.N2.A

}
}

the names N1.N2.A, R1.N2.A, and R2.A are completely equivalent and all refer to the class whose fully
qualified name is N1.N2.A.

9.3.2 Using namespace directives
A using-namespace-directive imports the types contained in a namespace into the immediately enclosing
compilation unit or namespace body, enabling the identifier of each type to be used without qualification.

using-namespace-directive:
using namespace-name ;

Within member declarations in compilation unit or namespace body that contains a using-namespace-directive,
the types contained in the given namespace can be referenced directly. For example:

namespace N1.N2
{

class A {}
}

namespace N3
{

using N1.N2;

class B: A {}
}

Here, within member declarations in the N3 namespace, the type members of N1.N2 are directly available, and
thus class N3.B derives from class N1.N2.A.

A using-namespace-directive imports the types contained in the given namespace, but specifically does not
import nested namespaces. In the example

namespace N1.N2
{

class A {}
}

namespace N3
{

using N1;

C# LANGUAGE REFERENCE

160 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

class B: N2.A {} // Error, N2 unknown
}

the using-namespace-directive imports the types contained in N1 , but not the namespaces nested in N1. Thus, the
reference to N2.A in the declaration of B is in error because no members named N2 are in scope.

Unlike a using-alias-directive, a using-namespace-directive may import types whose identifiers are already
defined within the enclosing compilation unit or namespace body. In effect, names imported by a using-
namespace-directive are hidden by similarly named members in the enclosing compilation unit or namespace
body. For example:

namespace N1.N2
{

class A {}

class B {}
}

namespace N3
{

using N1.N2;

class A {}
}

Here, within member declarations in the N3 namespace, A refers to N3.A rather than N1.N2.A.

When more than one namespace imported by using-namespace-directives in the same compilation unit or
namespace body contain types by the same name, references to that name are considered ambiguous. In the
example

namespace N1
{

class A {}
}

namespace N2
{

class A {}
}

namespace N3
{

using N1;

using N2;

class B: A {} // Error, A is ambiguous
}

both N1 and N2 contain a member A, and because N3 imports both, referencing A in N3 is an error. In this
situation, the conflict can be resolved either through qualification of references to A, or by introducing a using-
alias-directive that picks a particular A. For example:

namespace N3
{

using N1;

using N2;

using A = N1.A;

class B: A {} // A means N1.A
}

Like a using-alias-directive, a using-namespace-directive does not contribute any new members to the
underlying declaration space of the compilation unit or namespace, but rather affects only the compilation unit
or namespace body in which it appears.

Chapter 9 Namespaces

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 161

The namespace-name referenced by a using-namespace-directive is resolved in the same way as the namespace-
or-type-name referenced by a using-alias-directive. Thus, using-namespace-directives in the same compilation
unit or namespace body do not affect each other and can be written in any order.

9.4 Namespace members
A namespace-member-declaration is either a namespace-declaration (§9.2) or a type-declaration (§9.5).

namespace-member-declarations:
namespace-member-declaration
namespace-member-declarations namespace-member-declaration

namespace-member-declaration:
namespace-declaration
type-declaration

A compilation unit or a namespace body can contain namespace-member-declarations, and such declarations
contribute new members to the underlying declaration space of the containing compilation unit or namespace
body.

9.5 Type declarations
A type-declaration is either a class-declaration (§10.1), a struct-declaration (§11.1), an interface-declaration
(§13.1), an enum-declaration (§14.1), or a delegate-declaration (§15.1).

type-declaration:
class-declaration
struct-declaration
interface-declaration
enum-declaration
delegate-declaration

A type-declaration can occur as a top-level declaration in a compilation unit or as a member declaration within a
namespace, class, or struct.

When a type declaration for a type T occurs as a top-level declaration in a compilation unit, the fully qualified
name of the newly declared type is simply T. When a type declaration for a type T occurs within a namespace,
class, or struct, the fully qualified name of the newly declared type is N.T, where N is the fully qualified name of
the containing namespace, class, or struct.

A type declared within a class or struct is called a nested type (§10.2.6).

The permitted access modifiers and the default access for a type declaration depend on the context in which the
declaration takes place (§3.3.1):

• Types declared in compilation units or namespaces can have public or internal access. The default is
internal access.

• Types declared in classes can have public, protected internal, protected, internal , or private
access. The default is private access.

• Types declared in structs can have public, internal, or private access. The default is private access.

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 163

10. Classes

A class is a data structure that contains data members (constants, fields, and events), function members
(methods, properties, indexers, operators, constructors, and destructors), and nested types. Class types support
inheritance, a mechanism whereby derived classes can extend and specialize base classes.

10.1 Class declarations
A class-declaration is a type-declaration (§9.5) that declares a new class.

class-declaration:
attributesopt class-modifiersopt class identifier class-baseopt class-body ;opt

A class-declaration consists of an optional set of attributes (§17), followed by an optional set of class-modifiers
(§10.1.1), followed by the keyword class and an identifier that names the class, followed by an optional class-
base specification (§10.1.2), followed by a class-body (§10.1.3), optionally followed by a semicolon.

10.1.1 Class modifiers
A class-declaration may optionally include a sequence of class modifiers:

class-modifiers:
class-modifier
class-modifiers class-modifier

class-modifier:
new
public
protected
internal
private
abstract
sealed

It is an error for the same modifier to appear multiple times in a class declaration.

The new modifier is only permitted on nested classes. It specifies that the class hides an inherited member by the
same name, as described in §10.2.2.

The public, protected, internal , and private modifiers control the accessibility of the class. Depending
on the context in which the class declaration occurs, some of these modifiers may not be permitted (§3.3.1).

The abstract and sealed modifiers are discussed in the following sections.

10.1.1.1 Abstract classes
The abstract modifier is used to indicate that a class is incomplete and intended only to be a base class of
other classes. An abstract class differs from a non-abstract class is the following ways:

• An abstract class cannot be instantiated, and it is an error to use the new operator on an abstract class. While
it is possible to have variables and values whose compile-time types are abstract, such variables and values
will necessarily either be null or contain references to instances of non-abstract classes derived from the
abstract types.

• An abstract class is permitted (but not required) to contain abstract methods and accessors.

C# LANGUAGE REFERENCE

164 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• An abstract class cannot be sealed.

When a non-abstract class is derived from an abstract class, the non-abstract class must include actual
implementations of all inherited abstract methods and accessors. Such implementations are provided by
overriding the abstract methods and accessors. In the example

abstract class A
{

public abstract void F();
}

abstract class B: A
{

public void G() {}
}

class C: B
{

public override void F() {
// actual implementation of F

}
}

the abstract class A introduces an abstract method F. Class B introduces an additional method G , but doesn’t
provide an implementation of F. B must therefore also be declared abstract. Class C overrides F and provides an
actual implementation. Since there are no outstanding abstract methods or accessors in C, C is permitted (but not
required) to be non-abstract.

10.1.1.2 Sealed classes
The sealed modifier is used to prevent derivation from a class. An error occurs if a sealed class is specified as
the base class of another class.

A sealed class cannot also be an abstract class.

The sealed modifier is primarily used to prevent unintended derivation, but it also enables certain run-time
optimizations. In particular, because a sealed class is known to never have any derived classes, it is possible to
transform virtual function member invocations on sealed class instances into non-virtual invocations.

10.1.2 Class base specification
A class declaration may include a class-base specification which defines the direct base class of the class and
the interfaces implemented by the class.

class-base:
: class-type
: interface-type-list
: class-type , interface-type-list

interface-type-list:
interface-type
interface-type-list , interface-type

10.1.2.1 Base classes
When a class-type is included in the class-base, it specifies the direct base class of the class being declared. If a
class declaration has no class-base, or if the class-base lists only interface types, the direct base class is assumed
to be object. A class inherits members from its direct base class, as described in §10.2.1.

In the example

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 165

class A {}

class B: A {}

class A is said to be the direct base class of B, and B is said to be derived from A. Since A does not explicitly
specify a direct base class, its direct base class is implicitly object.

The direct base class of a class type must be at least as accessible as the class type itself (§3.3.4). For example, it
is an error for a public class to derive from a private or internal class.

The base classes of a class are the direct base class and its base classes. In other words, the set of base classes is
the transitive closure of the direct base class relationship. Referring to the example above, the base classes of B
are A and object.

Except for class object, every class has exactly one direct base class. The object class has no direct base
class and is the ultimate base class of all other classes.

When a class B derives from a class A, it is an error for A to depend on B. A class directly depends on its direct
base class (if any) and directly depends on the class within which it is immediately nested (if any). Given this
definition, the complete set of classes upon which a class depends is the transitive closure of the directly
depends on relationship.

The example

class A: B {}

class B: C {}

class C: A {}

is in error because the classes circularly depend on themselves. Likewise, the example

class A: B.C {}

class B: A
{

public class C {}
}

is in error because A depends on B.C (its direct base class), which depends on B (its immediately enclosing
class), which circularly depends on A.

Note that a class does not depend on the classes that are nested within it. In the example

class A
{

class B: A {}
}

B depends on A (because A is both its direct base class and its immediately enclosing class), but A does not
depend on B (since B is neither a base class nor an enclosing class of A). Thus, the example is valid.

It is not possible to derive from a sealed class. In the example

sealed class A {}

class B: A {} // Error, cannot derive from a sealed class

class B is in error because it attempts to derive from the sealed class A.

10.1.2.2 Interface implementations
A class-base specification may include a list of interface types, in which case the class is said to implement the
given interface types. Interface implementations are discussed further in §13.4.

C# LANGUAGE REFERENCE

166 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

10.1.3 Class body
The class-body of a class defines the members of the class.

class-body:
{ class-member-declarationsopt }

10.2 Class members
The members of a class consist of the members introduced by its class-member-declarations and the members
inherited from the direct base class.

class-member-declarations:
class-member-declaration
class-member-declarations class-member-declaration

class-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
destructor-declaration
static-constructor-declaration
type-declaration

The members of a class are divided into the following categories:

• Constants, which represent constant values associated with the class (§10.3).

• Fields, which are the variables of the class (§10.4).

• Methods, which implement the computations and actions that can be performed by the class (§10.5).

• Properties, which define named attributes and the actions associated with reading and writing those
attributes (§10.6).

• Events, which define notifications that are generated by the class (§10.7).

• Indexers, which permit instances of the class to be indexed in the same way as arrays (§10.8).

• Operators, which define the expression operators that can be applied to instances of the class (§10.9).

• Instance constructors, which implement the actions required to initialize instances of the class (§10.10)

• Destructors, which implement the actions to perform before instances of the class are permanently discarded
(§10.11).

• Static constructors, which implement the actions required to initialize the class itself (§10.12).

• Types, which represent the types that are local to the class (§9.5).

Members that contain executable code are collectively known as the function members of the class. The function
members of a class are the methods, properties, indexers, operators, constructors, and destructors of the class.

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 167

A class-declaration creates a new declaration space (§3.1), and the class-member-declarations immediately
contained by the class-declaration introduce new members into this declaration space. The following rules
apply to class-member-declarations:

• Constructors and destructors must have the same name as the immediately enclosing class. All other
members must have names that differ from the name of the immediately enclosing class.

• The name of a constant, field, property, event, or type must differ from the names of all other members
declared in the same class.

• The name of a method must differ from the names of all other non-methods declared in the same class. In
addition, the signature (§3.4) of a method must differ from the signatures of all other methods declared in
the same class.

• The signature of an indexer must differ from the signatures of all other indexers declared in the same class.

• The signature of an operator must differ from the signatures of all other operators declared in the same class.

The inherited members of a class (§10.2.1) are specifically not part of the declaration space of a class. Thus, a
derived class is allowed to declare a member with the same name or signature as an inherited member (which in
effect hides the inherited member).

10.2.1 Inheritance
A class inherits the members of its direct base class. Inheritance means that a class implicitly contains all
members of its direct base class, except for the constructors and destructors of the base class. Some important
aspects of inheritance are:

• Inheritance is transitive. If C is derived from B, and B is derived from A, then C inherits the members
declared in B as well as the members declared in A.

• A derived class extends its direct base class. A derived class can add new members to those it inherits, but it
cannot remove the definition of an inherited member.

• Constructors and destructors are not inherited, but all other members are, regardless of their declared
accessibility (§3.3). However, depending on their declared accessibility, inherited members may not be
accessible in a derived class.

• A derived class can hide (§3.5.1.2) inherited members by declaring new members with the same name or
signature. Note however that hiding an inherited member does not remove the member—it merely makes
the member inaccessible in the derived class.

• An instance of a class contains a copy of all instance fields declared in the class and its base classes, and an
implicit conversion (§6.1.4) exists from a derived class type to any of its base class types. Thus, a reference
to a derived class instance can be treated as a reference to a base class instance.

• A class can declare virtual methods, properties, and indexers, and derived classes can override the
implementation of these function members. This enables classes to exhibit polymorphic behavior wherein
the actions performed by a function member invocation varies depending on the run-time type of the
instance through which the function member is invoked.

10.2.2 The new modifier
A class-member-declaration is permitted to declare a member with the same name or signature as an inherited
member. When this occurs, the derived class member is said to hide the base class member. Hiding an inherited
member is not considered an error, but it does cause the compiler to issue a warning. To suppress the warning,
the declaration of the derived class member can include a new modifier to indicate that the derived member is
intended to hide the base member. This topic is discussed further in §3.5.1.2.

C# LANGUAGE REFERENCE

168 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

If a new modifier is included in a declaration that doesn’t hide an inherited member, a warning is issued to that
effect. This warning is suppressed by removing the new modifier.

It is an error to use the new and override modifiers in the same declaration.

10.2.3 Access modifiers
A class-member-declaration can have any one of the five possible types of declared accessibility (§3.3.1):
public, protected internal , protected, internal , or private. Except for the protected internal
combination, it is an error to specify more than one access modifier. When a class-member-declaration does not
include any access modifiers, the declaration defaults to private declared accessibility.

10.2.4 Constituent types
Types that are referenced in the declaration of a member are called the constituent types of the member. Possible
constituent types are the type of a constant, field, property, event, or indexer, the return type of a method or
operator, and the parameter types of a method, indexer, operator, or constructor.

The constituent types of a member must be at least as accessible as the member itself (§3.3.4).

10.2.5 Static and instance members
Members of a class are either static members or instance members. Generally speaking, it is useful to think of
static members as belonging to classes and instance members as belonging to objects (instances of classes).

When a field, method, property, event, operator, or constructor declaration includes a static modifier, it
declares a static member. In addition, a constant or type declaration implicitly declares a static member. Static
members have the following characteristics:

• When a static member is referenced in a member-access (§7.5.4) of the form E.M, E must denote a type. It is
an error for E to denote an instance.

• A static field identifies exactly one storage location. No matter how many instances of a class are created,
there is only ever one copy of a static field.

• A static function member (method, property, indexer, operator, or constructor) does not operate on a specific
instance, and it is an error to refer to this in a static function member.

When a field, method, property, event, indexer, constructor, or destructor declaration does not include a static
modifier, it declares an instance member. An instance member is sometimes called a non-static member.
Instance members have the following characteristics:

• When an instance member is referenced in a member-access (§7.5.4) of the form E.M, E must denote an
instance. It is an error for E to denote a type.

• Every instance of a class contains a separate copy of all instance fields of the class.

• An instance function member (method, property accessor, indexer accessor, constructor, or destructor)
operates on a given instance of the class, and this instance can be accessed as this (§7.5.7).

The following example illustrates the rules for accessing static and instance members:

class Test
{

int x;
static int y;

void F() {
x = 1; // Ok, same as this.x = 1
y = 1; // Ok, same as Test.y = 1

}

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 169

static void G() {
x = 1; // Error, cannot access this.x
y = 1; // Ok, same as Test.y = 1

}

static void Main() {
Test t = new Test();
t.x = 1; // Ok
t.y = 1; // Error, cannot access static member through instance
Test.x = 1; // Error, cannot access instance member through type
Test.y = 1; // Ok

}
}

The F method shows that in an instance function member, a simple-name (§7.5.2) can be used to access both
instance members and static members. The G method shows that in a static function member, it is an error to
access an instance member through a simple-name. The Main method shows that in a member-access (§7.5.4),
instance members must be accessed through instances, and static members must be accessed through types.

10.2.6 Nested types

10.3 Constants
Constants are members that represent constant values. A constant-declaration introduces one or more constants
of a given type.

constant-declaration:
attributesopt constant-modifiersopt const type constant-declarators ;

constant-modifiers:
constant-modifier
constant-modifiers constant-modifier

constant-modifier:
new
public
protected
internal
private

constant-declarators:
constant-declarator
constant-declarators , constant-declarator

constant-declarator:
identifier = constant-expression

A constant-declaration may include set of attributes (§17), a new modifier (§10.2.2), and a valid combination of
the four access modifiers (§10.2.3). The attributes and modifiers apply to all of the members declared by the
constant-declaration. Even though constants are considered static members, a constant-declaration neither
requires nor allows a static modifier.

The type of a constant-declaration specifies the type of the members introduced by the declaration. The type is
followed by a list of constant-declarators, each of which introduces a new member. A constant-declarator
consists of an identifier that names the member, followed by an “=” token, followed by a constant-expression
(§7.15) that gives the value of the member.

The type specified in a constant declaration must be sbyte, byte, short, ushort , int , uint, long, ulong ,
char, float, double , decimal , bool, string , an enum-type, or a reference-type. Each constant-expression

C# LANGUAGE REFERENCE

170 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

must yield a value of the target type or of a type that can be converted to the target type by an implicit
conversion (§6.1).

The type of a constant must be at least as accessible as the constant itself (§3.3.4).

A constant can itself participate in a constant-expression. Thus, a constant may be used in any construct that
requires a constant-expression. Examples of such constructs include case labels, goto case statements, enum
member declarations, attributes, and other constant declarations.

As described in §7.15, a constant-expression is an expression that can be fully evaluated at compile-time. Since
the only way to create a non-null value of a reference-type other than string is to apply the new operator, and
since the new operator is not permitted in a constant-expression, the only possible value for constants of
reference-types other than string is null.

When a symbolic name for a constant value is desired, but when type of the value is not permitted in a constant
declaration or when the value cannot be computed at compile-time by a constant-expression, a readonly field
(§10.4.2) may be used instead.

A constant declaration that declares multiple constants is equivalent to multiple declarations of single constants
with the same attributes, modifiers, and type. For example

class A
{

public const double X = 1.0, Y = 2.0, Z = 3.0;
}

is equivalent to

class A
{

public const double X = 1.0;
public const double Y = 2.0;
public const double Z = 3.0;

}

Constants are permitted to depend on other constants within the same project as long as the dependencies are not
of a circular nature. The compiler automatically arranges to evaluate the constant declarations in the appropriate
order. In the example

class A
{

public const int X = B.Z + 1;
public const int Y = 10;

}

class B
{

public const int Z = A.Y + 1;
}

the compiler first evaluates Y, then evaluates Z, and finally evaluates X, producing the values 10, 11, and 12.
Constant declarations may depend on constants from other projects, but such dependencies are only possible in
one direction. Referring to the example above, if A and B were declared in separate projects, it would be possible
for A.X to depend on B.Z, but B.Z could then not simultaneously depend on A.Y.

10.4 Fields
Fields are members that represent variables. A field-declaration introduces one or more fields of a given type.

field-declaration:
attributesopt field-modifiersopt type variable-declarators ;

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 171

field-modifiers:
field-modifier
field-modifiers field-modifier

field-modifier:
new
public
protected
internal
private
static
readonly

variable-declarators:
variable-declarator
variable-declarators , variable-declarator

variable-declarator:
identifier
identifier = variable-initializer

variable-initializer:
expression
array-initializer

A field-declaration may include set of attributes (§17), a new modifier (§10.2.2), a valid combination of the four
access modifiers (§10.2.3), a static modifier (§10.4.1), and a readonly modifier (§10.4.2). The attributes
and modifiers apply to all of the members declared by the field-declaration.

The type of a field-declaration specifies the type of the members introduced by the declaration. The type is
followed by a list of variable-declarators, each of which introduces a new member. A variable-declarator
consists of an identifier that names the member, optionally followed by an “=” token and a variable-initializer
(§10.4.4) that gives the initial value of the member.

The type of a field must be at least as accessible as the field itself (§3.3.4).

The value of a field is obtained in an expression using a simple-name (§7.5.2) or a member-access (§7.5.4). The
value of a field is modified using an assignment (§7.13).

A field declaration that declares multiple fields is equivalent to multiple declarations of single fields with the
same attributes, modifiers, and type. For example

class A
{

public static int X = 1, Y, Z = 100;
}

is equivalent to

class A
{

public static int X = 1;
public static int Y;
public static int Z = 100;

}

10.4.1 Static and instance fields
When a field-declaration includes a static modifier, the fields introduced by the declaration are static fields.
When no static modifier is present, the fields introduced by the declaration are instance fields. Static fields

C# LANGUAGE REFERENCE

172 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

and instance fields are two of the several kinds of variables (§5) supported by C#, and are at times referred to as
static variables and instance variables.

A static field identifies exactly one storage location. No matter how many instances of a class are created, there
is only ever one copy of a static field. A static field comes into existence when the type in which it is declared is
loaded, and ceases to exist when the type in which it is declared is unloaded.

Every instance of a class contains a separate copy of all instance fields of the class. An instance field comes into
existence when a new instance of its class is created, and ceases to exist when there are no references to that
instance and the destructor of the instance has executed.

When a field is referenced in a member-access (§7.5.4) of the form E.M, if M is a static field, E must denote a
type, and if M is an instance field, E must denote an instance.

The differences between static and instance members are further discussed in §10.2.5.

10.4.2 Readonly fields
When a field-declaration includes a readonly modifier, assignments to the fields introduced by the declaration
can only occur as part of the declaration or in a constructor in the same class. Specifically, assignments to a
readonly field are permitted only in the following contexts:

• In the variable-declarator that introduces the field (by including a variable-initializer in the declaration).

• For an instance field, in the instance constructors of the class that contains the field declaration, or for a
static field, in the static constructor of the class the contains the field declaration. These are also the only
contexts in which it is valid to pass a readonly field as an out or ref parameter.

Attempting to assign to a readonly field or pass it as an out or ref parameter in any other context is an error.

10.4.2.1 Using static readonly fields for constants
A static readonly field is useful when a symbolic name for a constant value is desired, but when the type of
the value is not permitted in a const declaration or when the value cannot be computed at compile-time by a
constant-expression. In the example

public class Color
{

public static readonly Color Black = new Color(0, 0, 0);
public static readonly Color White = new Color(255, 255, 255);
public static readonly Color Red = new Color(255, 0, 0);
public static readonly Color Green = new Color(0, 255, 0);
public static readonly Color Blue = new Color(0, 0, 255);

private byte red, green, blue;

public Color(byte r, byte g, byte b) {
red = r;
green = g;
blue = b;

}
}

the Black, Write, Red, Green , and Blue members cannot be declared as const members because their
values cannot be computed at compile-time. However, declaring the members as static readonly fields has
much the same effect.

10.4.2.2 Versioning of constants and static readonly fields
Constants and readonly fields have different binary versioning semantics. When an expression references a
constant, the value of the constant is obtained at compile-time, but when an expression references a readonly

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 173

field, the value of the field is not obtained until run-time. Consider an application that consists of two separate
projects:

namespace Project1
{

public class Utils
{

public static readonly int X = 1;
}

}

namespace Project2
{

class Test
{

static void Main() {
Console.WriteLine(Project1.Utils.X);

}
}

}

The Project1 and Project2 namespaces denote two projects that are compiled separately. Because
Project1.Utils.X is declared as a static readonly field, the value output by the Console.WriteLine
statement is not known at compile-time, but rather is obtained at run-time. Thus, if the value of X is changed and
Project1 is recompiled, the Console.WriteLine statement will output the new value even if Project2
isn’t recompiled. However, had X been a constant, the value of X would have been obtained at the time
Project2 was compiled, and would remain unaffected by changes in Project1 until Project2 is
recompiled.

10.4.3 Field initialization
The initial value of a field is the default value (§5.2) of the field’s type. When a class is loaded, all static fields
are initialized to their default values, and when an instance of a class is created, all instance fields are initialized
to their default values. It is not possible to observe the value of a field before this default initialization has
occurred, and a field is thus never “uninitialized”. The example

class Test
{

static bool b;
int i;

static void Main() {
Test t = new Test();
Console.WriteLine("b = {0}, i = {1}", b, t.i);

}
}

produces the output

b = False, i = 0

because b is automatically initialized to its default value when the class is loaded and i is automatically
initialized to its default value when an instance of the class is created.

10.4.4 Variable initializers
Field declarations may include variable-initializers. For static fields, variable initializers correspond to
assignment statements that are executed when the class is loaded. For instance fields, variable initializers
correspond to assignment statements that are executed when an instance of the class is created.

The example

C# LANGUAGE REFERENCE

174 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

class Test
{

static double x = Math.Sqrt(2.0);
int i = 100;
string s = "Hello";

static void Main() {
Test t = new Test();
Console.WriteLine("x = {0}, i = {1}, s = {2}", x, t.i, t.s);

}
}

produces the output

x = 1.414213562373095, i = 100, s = Hello

because an assignment to x occurs when the class is loaded and assignments to i and s occur when an new
instance of the class is created.

The default value initialization described in §10.4.3 occurs for all fields, including fields that have variable
initializers. Thus, when a class is loaded, all static fields are first initialized to their default values, and then the
static field initializers are executed in textual order. Likewise, when an instance of a class is created, all instance
fields are first initialized to their default values, and then the instance field initializers are executed in textual
order.

It is possible for static fields with variable initializers to be observed in their default value state, though this is
strongly discouraged as a matter of style. The example

class Test
{

static int a = b + 1;
static int b = a + 1;

static void Main() {
Console.WriteLine("a = {0}, b = {1}, a, b);

}
}

exhibits this behavior. Despite the circular definitions of a and b, the program is legal. It produces the output

a = 1, b = 2

because the static fields a and b are initialized to 0 (the default value for int) before their initializers are
executed. When the initializer for a runs, the value of b is zero, and so a is initialized to 1. When the initializer
for b runs, the value of a is already 1, and so b is initialized to 2.

10.4.4.1 Static field initialization
The static field variable initializers of a class correspond to a sequence of assignments that are executed
immediately upon entry to the static constructor of the class. The variable initializers are executed in the textual
order they appear in the class declaration. The class loading and initialization process is described further in
§10.12.

10.4.4.2 Instance field initialization
The instance field variable initializers of a class correspond to a sequence of assignments that are executed
immediately upon entry to one of the instance constructors of the class. The variable initializers are executed in
the textual order they appear in the class declaration. The class instance creation and initialization process is
described further in §10.10.

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 175

A variable initializer for an instance field cannot reference the instance being created. Thus, it is an error to
reference this in a variable initializer, as is it an error for a variable initializer to reference any instance
member through a simple-name. In the example

class A
{

int x = 1;
int y = x + 1; // Error, reference to instance member of this

}

the variable initializer for y is in error because it references a member of the instance being created.

10.5 Methods
Methods implement the computations and actions that can be performed by a class. Methods are declared using
method-declarations:

method-declaration:
method-header method-body

method-header:
attributesopt method-modifiersopt return-type member-name (formal-parameter-listopt)

method-modifiers:
method-modifier
method-modifiers method-modifier

method-modifier:
new
public
protected
internal
private
static
virtual
override
abstract
extern

return-type:
type
void

member-name:
identifier
interface-type . identifier

method-body:
block
;

A method-declaration may include set of attributes (§17), a new modifier (§10.2.2), a valid combination of the
four access modifiers (§10.2.3), one of the static (§10.5.2), virtual (§10.5.3), override (§10.5.4), or
abstract (§10.5.5) modifiers, and an extern (§10.5.6) modifier.

The return-type of a method declaration specifies the type of the value computed and returned by the method.
The return-type is void if the method does not return a value.

C# LANGUAGE REFERENCE

176 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The member-name specifies the name of the method. Unless the method is an explicit interface member
implementation, the member-name is simply an identifier. For an explicit interface member implementation
(§13.4.1) , the member-name consists of an interface-type followed by a “.” and an identifier.

The optional formal-parameter-list specifies the parameters of the method (§10.5.1).

The return-type and each of the types referenced in the formal-parameter-list of a method must be at least as
accessible as the method itself (§3.3.4).

For abstract and extern methods, the method-body consists simply of a semicolon. For all other methods,
the method-body consists of a block which specifies the statements to execute when the method is invoked.

The name and the formal parameter list of method defines the signature (§3.4) of the method. Specifically, the
signature of a method consists of its name and the number, modifiers, and types of its formal parameters. The
return type is not part of a method’s signature, nor are the names of the formal parameters.

The name of a method must differ from the names of all other non-methods declared in the same class. In
addition, the signature of a method must differ from the signatures of all other methods declared in the same
class.

10.5.1 Method parameters
The parameters of a method, if any, are declared by the method’s formal-parameter-list.

formal-parameter-list:
formal-parameter
formal-parameter-list , formal-parameter

formal-parameter:
attributesopt parameter-modifieropt type identifier

parameter-modifier:
ref
out
params

The formal parameter list consists of zero or more formal-parameters, separated by commas. A formal-
parameter consists of an optional set of attributes (§17), an optional modifier, a type, and an identifier. Each
formal-parameter declares a parameter of the given type with the given name.

A method declaration creates a separate declaration space for parameters and local variables. Names are
introduced into this declaration space by the formal parameter list of the method and by local variable
declarations in the block of the method. All names in the declaration space of a method must be unique. Thus, it
is an error for a parameter or local variable to have the same name as another parameter or local variable.

A method invocation (§7.5.5.1) creates a copy, specific to that invocation, of the formal parameters and local
variables of the method, and the argument list of the invocation assigns values or variable references to the
newly created formal parameters. Within the block of a method, formal parameters can be referenced by their
identifiers in simple-name expressions (§7.5.2).

There are four kinds of formal parameters:

• Value parameters, which are declared without any modifiers.

• Reference parameters, which are declared with the ref modifier.

• Output parameters, which are declared with the out modifier.

• Params parameters, which are declared with the params modifier.

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 177

As described in §3.4, parameter modifiers are part of a method’s signature.

10.5.1.1 Value parameters
A parameter declared with no modifiers is a value parameter. A value parameter corresponds to a local variable
that gets its initial value from the corresponding argument supplied in the method invocation.

When a formal parameter is a value parameter, the corresponding argument in a method invocation must be an
expression of a type that is implicitly convertible (§6.1) to the formal parameter type.

A method is permitted to assign new values to a value parameter. Such assignments only affect the local storage
location represented by the value parameter—they have no effect on the actual argument given in the method
invocation.

10.5.1.2 Reference parameters
A parameter declared with a ref modifier is a reference parameter. Unlike a value parameter, a reference
parameter does not create a new storage location. Instead, a reference parameter represents the same storage
location as the variable given as the argument in the method invocation.

When a formal parameter is a reference parameter, the corresponding argument in a method invocation must
consist of the keyword ref followed by a variable-reference (§5.4) of the same type as the formal parameter. A
variable must be definitely assigned before it can be passed as a reference parameter.

Within a method, a reference parameter is always considered definitely assigned.

The example

class Test
{

static void Swap(ref int x, ref int y) {
int temp = x;
x = y;
y = temp;

}

static void Main() {
int i = 1, j = 2;
Swap(ref i, ref j);
Console.WriteLine("i = {0}, j = {1}", i, j);

}
}

produces the output

i = 2, j = 1

For the invocation of Swap in Main , x represents i and y represents j. Thus, the invocation has the effect of
swapping the values of i and j.

In a method that takes reference parameters it is possible for multiple names to represent the same storage
location. In the example

class A
{

string s;

void F(ref string a, ref string b) {
s = "One";
a = "Two";
b = "Three";

}

C# LANGUAGE REFERENCE

178 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

void G() {
F(ref s, ref s);

}
}

the invocation of F in G passes a reference to s for both a and b. Thus, for that invocation, the names s, a, and b
all refer to the same storage location, and the three assignments all modify the instance field s.

10.5.1.3 Output parameters
A parameter declared with an out modifier is an output parameter. Similar to a reference parameter, an output
parameter does not create a new storage location. Instead, an output parameter represents the same storage
location as the variable given as the argument in the method invocation.

When a formal parameter is an output parameter, the corresponding argument in a method invocation must
consist of the keyword out followed by a variable-reference (§5.4) of the same type as the formal parameter. A
variable need not be definitely assigned before it can be passed as an output parameter, but following an
invocation where a variable was passed as an output parameter, the variable is considered definitely assigned.

Within a method, just like a local variable, an output parameter is initially considered unassigned and must be
definitely assigned before its value is used.

Every output parameter of a method must be definitely assigned before the method returns.

Output parameters are typically used in methods that produce multiple return values. For example:

class Test
{

static void SplitPath(string path, out string dir, out string name) {
int i = path.Length;
while (i > 0) {

char ch = path[i – 1];
if (ch == '\\' || ch == '/' || ch == ':') break;
i--;

}
dir = path.Substring(0, i);
name = path.Substring(i);

}

static void Main() {
string dir, name;
SplitPath("c:\\Windows\\System\\hello.txt", out dir, out name);
Console.WriteLine(dir);
Console.WriteLine(name);

}
}

The example produces the output:

c:\Windows\System\
hello.txt

Note that the dir and name variables can be unassigned before they are passed to SplitPath, and that they are
considered definitely assigned following the call.

10.5.1.4 Params parameters
A parameter declared with a params modifier is a params parameter. A params parameter must be the last
parameter in the formal parameter list, and the type of a params parameter must be a single-dimension array
type. For example, the types int[] and int[][] can be used as the type of a params parameter, but the type
int[,] cannot be used in this way.

A params parameter enables a caller to supply values in one of two ways.

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 179

• The caller may specify an expression of a type that is implicitly convertible (§6.1) to the formal parameter
type. In this case, the params parameter acts precisely like a value parameter.

• Alternatively, the caller may specify zero or more expressions, where the type of each expression is
implicitly convertible (§6.1) to the element type of the formal parameter type. In this case, params parameter
is initialized with an array of the formal parameter type that contains the value or values provided by the
caller.

A method is permitted to assign new values to a params parameter. Such assignments only affect the local
storage location represented by the params parameter.

The example

void F(params int[] values) {
Console.WriteLine("values contains %0 items", values.Length);
foreach (int value in values)

Console.WriteLine("\t%0", value);
}

void G() {
int i = 1, j = 2, k = 3;
F(new int[] {i, j, k);
F(i, j, k);

}

shows a method F with a params parameter of type int[]. In the method G, two invocations of F are shown. In
the first invocation, F is called with a single argument of type int[]. In the second invocation, F is called with
three expressions of type int. The output of each call is the same:

values contains 3 items:
1
2
3

A params parameter can be passed along to another params parameter. In the example

void F(params object[] fparam) {
Console.WriteLine(fparam.Length);

}

void G(params object[] gparam) {
Console.WriteLine(gparam.Length);
F(gparam);

}

void H() {
G(1, 2, 3);

}

the method G has a params parameter of type object[]. When this parameter is used as an actual argument for
the method F, it is passed along without modification. The output is:

3
3

The example

void F(params object[] fparam) {
Console.WriteLine(fparam.Length);

}

void G(params object[] gparam) {
Console.WriteLine(gparam.Length);
F((object) gparam); // Note: cast to (object)

}

C# LANGUAGE REFERENCE

180 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

void H() {
G(1, 2, 3);

}

shows that it is also possible to pass the params parameter as a single value by adding a cast. The output is:

3
1

10.5.2 Static and instance methods
When a method declaration includes a static modifier, the method is said to be a static method. When no
static modifier is present, the method is said to be an instance method.

A static method does not operate on a specific instance, and it is an error to refer to this in a static method. It is
furthermore an error to include a virtual, abstract, or override modifier on a static method.

An instance method operates on a given instance of a class, and this instance can be accessed as this (§7.5.7).

The differences between static and instance members are further discussed in §10.2.5.

10.5.3 Virtual methods
When an instance method declaration includes a virtual modifier, the method is said to be a virtual method.
When no virtual modifier is present, the method is said to be a non-virtual method.

It is an error for a method declaration that includes the virtual modifier to also include any one of the
static, abstract , or override modifiers.

The implementation of a non-virtual method is invariant: The implementation is the same whether the method is
invoked on an instance of the class in which it is declared or an instance of a derived class. In contrast, the
implementation of a virtual method can be changed by derived classes. The process of changing the
implementation of an inherited virtual method is known as overriding the method (§10.5.4).

In a virtual method invocation, the run-time type of the instance for which the invocation takes place determines
the actual method implementation to invoke. In a non-virtual method invocation, the compile-time type of the
instance is the determining factor. In precise terms, when a method named N is invoked with an argument list A
on an instance with a compile-time type C and a run-time type R (where R is either C or a class derived from C),
the invocation is processed as follows:

• First, overload resolution is applied to C , N, and A, to select a specific method M from the set of methods
declared in and inherited by C. This is described in §7.5.5.1.

• Then, if M is a non-virtual method, M is invoked.

• Otherwise, M is a virtual method, and the most derived implementation of M with respect to R is invoked.

For every virtual method declared in or inherited by a class, there exists a most derived implementation of the
method with respect to that class. The most derived implementation of a virtual method M with respect to a class
R is determined as follows:

• If R contains the introducing virtual declaration of M, then this is the most derived implementation of M.

• Otherwise, if R contains an override of M, then this is the most derived implementation of M.

• Otherwise, the most derived implementation of M is the same as that of the direct base class of R.

The following example illustrates the differences between virtual and non-virtual methods:

class A
{

public void F() { Console.WriteLine("A.F"); }

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 181

public virtual void G() { Console.WriteLine("A.G"); }
}

class B: A
{

new public void F() { Console.WriteLine("B.F"); }

public override void G() { Console.WriteLine("B.G"); }
}

class Test
{

static void Main() {
B b = new B();
A a = b;
a.F();
b.F();
a.G();
b.G();

}
}

In the example, A introduces a non-virtual method F and a virtual method G. B introduces a new non-virtual
method F, thus hiding the inherited F, and also overrides the inherited method G. The example produces the
output:

A.F
B.F
B.G
B.G

Notice that the statement a.G() invokes B.G, not A.G. This is because the run-time type of the instance (which
is B), not the compile-time type of the instance (which is A), determines the actual method implementation to
invoke.

Because methods are allowed to hide inherited methods, it is possible for a class to contain several virtual
methods with the same signature. This does not present an ambiguity problem, since all but the most derived
method are hidden. In the example

class A
{

public virtual void F() { Console.WriteLine("A.F"); }
}

class B: A
{

public override void F() { Console.WriteLine("B.F"); }
}

class C: B
{

new public virtual void F() { Console.WriteLine("C.F"); }
}

class D: C
{

public override void F() { Console.WriteLine("D.F"); }
}

C# LANGUAGE REFERENCE

182 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

class Test
{

static void Main() {
D d = new D();
A a = d;
B b = d;
C c = d;
a.F();
b.F();
c.F();
d.F();

}
}

the C and D classes contain two virtual methods with the same signature: The one introduced by A and the one
introduced by C. The method introduced by C hides the method inherited from A. Thus, the override declaration
in D overrides the method introduced by C, and it is not possible for D to override the method introduced by A.
The example produces the output:

B.F
B.F
D.F
D.F

Note that it is possible to invoke the hidden virtual method by accessing an instance of D through a less derived
type in which the method is not hidden.

10.5.4 Override methods
When an instance method declaration includes an override modifier, the method overrides an inherited virtual
method with the same signature. Whereas a virtual method declaration introduces a new method, an
override method declaration specializes an existing inherited virtual method by providing a new
implementation of the method.

It is an error for an override method declaration to include any one of the new, static, virtual, or
abstract modifiers.

The method overridden by an override declaration is known as the overridden base method. For an override
method M declared in a class C, the overridden base method is determined by examining each base class of C,
starting with the direct base class of C and continuing with each successive direct base class, until an accessible
method with the same signature as M is located. For purposes of locating the overridden base method, a method
is considered accessible if it is public , if it is protected, if it is protected internal , or if it is
internal and declared in the same project as C.

A compile-time error occurs unless all of the following are true for an override declaration:

• An overridden base method can be located as described above.

• The overridden base method is a virtual, abstract, or override method. In other words, the overridden base
method cannot be static or non-virtual.

• The override declaration and the overridden base method have the same declared accessibility. In other
words, an override declaration cannot change the accessibility of the virtual method.

An override declaration can access the overridden base method using a base-access (§7.5.8). In the example

class A
{

int x;

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 183

public virtual void PrintFields() {
Console.WriteLine("x = {0}", x);

}
}

class B: A
{

int y;

public override void PrintFields() {
base.PrintFields();
Console.WriteLine("y = {0}", y);

}
}

the base.PrintFields() invocation in B invokes the PrintFields method declared in A. A base-access
disables the virtual invocation mechanism and simply treats the base method as a non-virtual method. Had the
invocation in B been written ((A)this).PrintFields() , it would recursively invoke the PrintFields
method declared in B , not the one declared in A.

Only by including an override modifier can a method override another method. In all other cases, a method
with the same signature as an inherited method simply hides the inherited method. In the example

class A
{

public virtual void F() {}
}

class B: A
{

public virtual void F() {} // Warning, hiding inherited F()
}

the F method in B does not include an override modifier and therefore does not override the F method in A.
Rather, the F method in B hides the method in A, and a warning is reported because the declaration does not
include a new modifier.

In the example

class A
{

public virtual void F() {}
}

class B: A
{

new private void F() {} // Hides A.F within B
}

class C: B
{

public override void F() {} // Ok, overrides A.F
}

the F method in B hides the virtual F method inherited from A. Since the new F in B has private access, its scope
only includes the class body of B and does not extend to C. The declaration of F in C is therefore permitted to
override the F inherited from A.

10.5.5 Abstract methods
When an instance method declaration includes an abstract modifier, the method is said to be an abstract
method. An abstract method is implicitly also a virtual method.

An abstract declaration introduces a new virtual method but does not provide an implementation of the method.
Instead, non-abstract derived classes are required to provide their own implementation by overriding the

C# LANGUAGE REFERENCE

184 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

method. Because an abstract method provides no actual implementation, the method-body of an abstract method
simply consists of a semicolon.

Abstract method declarations are only permitted in abstract classes (§10.1.1.1).

It is an error for an abstract method declaration to include any one of the static, virtual, or override
modifiers.

In the example

public abstract class Shape
{

public abstract void Paint(Graphics g, Rectangle r);
}

public class Ellipse: Shape
{

public override void Paint(Graphics g, Rectangle r) {
g.drawEllipse(r);

}
}

public class Box: Shape
{

public override void Paint(Graphics g, Rectangle r) {
g.drawRect(r);

}
}

the Shape class defines the abstract notion of a geometrical shape object that can paint itself. The Paint
method is abstract because there is no meaningful default implementation. The Ellipse and Box classes are
concrete Shape implementations. Because theses classes are non-abstract, they are required to override the
Paint method and provide an actual implementation.

It is an error for a base-access (§7.5.8) to reference an abstract method. In the example

class A
{

public abstract void F();
}

class B: A
{

public override void F() {
base.F(); // Error, base.F is abstract

}
}

an error is reported for the base.F() invocation because it references an abstract method.

10.5.6 External methods
A method declaration may include the extern modifier to indicate that the method is implemented externally.
Because an external method declaration provides no actual implementation, the method-body of an external
method simply consists of a semicolon.

The extern modifier is typically used in conjunction with a DllImport attribute (§20.1.5), allowing external
methods to be implemented by DLLs (Dynamic Link Libraries). The execution environment may support other
mechanisms whereby implementations of external methods can be provided.

It is an error for an external method declaration to also include the abstract modifier. When an external
method includes a DllImport attribute, the method declaration must also include a static modifier.

This example demonstrates use of the extern modifier and the DllImport attribute:

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 185

class Path
{

[DllImport("kernel32", setLastError=true)]
static extern bool CreateDirectory(string name, SecurityAttributes sa);

[DllImport("kernel32", setLastError=true)]
static extern bool RemoveDirectory(string name);

[DllImport("kernel32", setLastError=true)]
static extern int GetCurrentDirectory(int bufSize, StringBuilder buf);

[DllImport("kernel32", setLastError=true)]
static extern bool SetCurrentDirectory(string name);

}

10.5.7 Method body
The method-body of a method declaration consists either of a block or a semicolon.

Abstract and external method declarations do not provide a method implementation, and the method body of an
abstract or external method simply consists of a semicolon. For all other methods, the method body is a block
(§8.2) that contains the statements to execute when the method is invoked.

When the return type of a method is void, return statements (§8.9.4) in the method body are not permitted to
specify an expression. If execution of the method body of a void method completes normally (that is, if control
flows off the end of the method body), the method simply returns to the caller.

When the return type of a method is not void, each return statement in the method body must specify an
expression of a type that is implicitly convertible to the return type. Execution of the method body of a value-
returning method is required to terminate in a return statement that specifies an expression or in a throw
statement that throws an exception. It is an error if execution of the method body can complete normally. In
other words, in a value-returning method, control is not permitted to flow off the end of the method body.

In the example

class A
{

public int F() {} // Error, return value required

public int G() {
return 1;

}

public int H(bool b) {
if (b) {

return 1;
}
else {

return 0;
}

}
}

the value-returning F method is in error because control can flow off the end of the method body. The G and H
methods are correct because all possible execution paths end in a return statement that specifies a return value.

10.5.8 Method overloading
The method overload resolution rules are described in §7.4.2.

10.6 Properties
A property is a named attribute associated with an object or a class. Examples of properties include the length of
a string, the size of a font, the caption of a window, the name of a customer, and so on. Properties are a natural

C# LANGUAGE REFERENCE

186 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

extension of fields—both are named members with associated types, and the syntax for accessing fields and
properties is the same. However, unlike fields, properties do not denote storage locations. Instead, properties
have accessors that specify the statements to execute in order to read or write their values. Properties thus
provide a mechanism for associating actions with the reading and writing of an object’s attributes, and they
furthermore permit such attributes to be computed.

Properties are declared using property-declarations:

property-declaration:
attributesopt property-modifiersopt type member-name { accessor-declarations }

property-modifiers:
property-modifier
property-modifiers property-modifier

property-modifier:
new
public
protected
internal
private
static

member-name:
identifier
interface-type . identifier

A property-declaration may include set of attributes (§17), a new modifier (§10.2.2), a valid combination of the
four access modifiers (§10.2.3), and a static modifier (§10.2.5).

The type of a property declaration specifies the type of the property introduced by the declaration, and the
member-name specifies the name of the property. Unless the property is an explicit interface member
implementation, the member-name is simply an identifier. For an explicit interface member implementation
(§13.4.1) , the member-name consists of an interface-type followed by a “.” and an identifier.

The type of a property must be at least as accessible as the property itself (§3.3.4).

The accessor-declarations, which must be enclosed in “{” and “}” tokens, declare the accessors (§10.6.2) of the
property. The accessors specify the executable statements associated with reading and writing the property.

Even though the syntax for accessing a property is the same as that for a field, a property is not classified as a
variable. Thus, it is not possible to pass a property as a ref or out parameter.

10.6.1 Static properties
When a property declaration includes a static modifier, the property is said to be a static property. When no
static modifier is present, the property is said to be an instance property.

A static property is not associated with a specific instance, and it is an error to refer to this in the accessors of a
static property. It is furthermore an error to include a virtual, abstract, or override modifier on an
accessor of a static property.

An instance property is associated with a given instance of a class, and this instance can be accessed as this
(§7.5.7) in the accessors of the property.

When a property is referenced in a member-access (§7.5.4) of the form E.M, if M is a static property, E must
denote a type, and if M is an instance property, E must denote an instance.

The differences between static and instance members are further discussed in §10.2.5.

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 187

10.6.2 Accessors
The accessor-declarations of a property specify the executable statements associated with reading and writing
the property.

accessor-declarations:
get-accessor-declaration set-accessor-declarationopt

set-accessor-declaration get-accessor-declarationopt

get-accessor-declaration:
accessor-modifieropt get accessor-body

set-accessor-declaration:
accessor-modifieropt set accessor-body

accessor-modifier:
virtual
override
abstract

accessor-body:
block
;

The accessor declarations consist of a get-accessor-declaration, a set-accessor-declaration, or both. Each
accessor declaration consists of an optional accessor-modifier, followed by the token get or set, followed by
an accessor-body. For abstract accessors, the accessor-body is simply a semicolon. For all other accessors,
the accessor-body is a block which specifies the statements to execute when the accessor is invoked.

A get accessor corresponds to a parameterless method with a return value of the property type. Except as the
target of an assignment, when a property is referenced in an expression, the get accessor of the property is
invoked to compute the value of the property (§7.1.1). The body of a get accessor must conform to the rules for
value-returning methods described in §10.5.7. In particular, all return statements in the body of a get accessor
must specify an expression that is implicitly convertible to the property type. Furthermore, a get accessor is
required to terminate in a return statement or a throw statement, and control is not permitted to flow off the
end of the get accessor’s body.

A set accessor corresponds to a method with a single value parameter of the property type and a void return
type. The implicit parameter of a set accessor is always named value. When a property is referenced as the
target of an assignment, the set accessor is invoked with an argument that provides the new value (§7.13.1).
The body of a set accessor must conform to the rules for void methods described in §10.5.7. In particular,
return statements in the set accessor body are not permitted to specify an expression.

Since a set accessor implicitly has a parameter named value, it is an error for a local variable declaration in a
set accessor to use that name.

Based on the presence or absence of the get and set accessors, a property is classified as follows:

• A property that includes both a get accessor and a set accessor is said to be a read-write property.

• A property that has only a get accessor is said to be read-only property. It is an error for a read-only
property to be the target of an assignment.

• A property that has only a set accessor is said to be write-only property. Except as the target of an
assignment, it is an error to reference a write-only property in an expression.

Implementation note

C# LANGUAGE REFERENCE

188 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

In the .NET runtime, when a class declares a property X of type T, it is an error for the same class to also declare a method
with one of the following signatures:

T get_X();
void set_X(T value);

The .NET runtime reserves these signatures for compatibility with programming languages that do not support properties.
Note that this restriction does not imply that a C# program can use method syntax to access properties or property syntax
to access methods. It merely means that properties and methods that follow this pattern are mutually exclusive within the
same class.

In the example

public class Button: Control
{

private string caption;

public string Caption {
get {

return caption;
}
set {

if (caption != value) {
caption = value;
Repaint();

}
}

}

public override void Paint(Graphics g, Rectangle r) {
// Painting code goes here

}
}

the Button control declares a public Caption property. The get accessor of the Caption property returns the
string stored in the private caption field. The set accessor checks if the new value is different from the
current value, and if so, it stores the new value and repaints the control. Properties often follow the pattern
shown above: The get accessor simply returns a value stored in a private field, and the set accessor modifies
the private field and then performs any additional actions required to fully update the state of the object.

Given the Button class above, the following is an example of use of the Caption property:

Button okButton = new Button();
okButton.Caption = "OK"; // Invokes set accessor
string s = okButton.Caption; // Invokes get accessor

Here, the set accessor is invoked by assigning a value to the property, and the get accessor is invoked by
referencing the property in an expression.

The get and set accessors of a property are not distinct members, and it is not possible to declare the accessors
of a property separately. The example

class A
{

private string name;

public string Name { // Error, duplicate member name
get { return name; }

}

public string Name { // Error, duplicate member name
set { name = value; }

}
}

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 189

does not declare a single read-write property. Rather, it declares two properties with the same name, one read-
only and one write-only. Since two members declared in the same class cannot have the same name, the
example causes a compile-time error to occur.

When a derived class declares a property by the same name as an inherited property, the derived property hides
the inherited property with respect to both reading and writing. In the example

class A
{

public int P {
set {...}

}
}

class B: A
{

new public int P {
get {...}

}
}

the P property in B hides the P property in A with respect to both reading and writing. Thus, in the statements

B b = new B();
b.P = 1; // Error, B.P is read-only
((A)b).P = 1; // Ok, reference to A.P

the assignment to b.P causes an error to be reported, since the read-only P property in B hides the write-only P
property in A. Note, however, that a cast can be used to access the hidden P property.

Unlike public fields, properties provide a separation between an object’s internal state and its public interface.
Consider the example:

class Label
{

private int x, y;
private string caption;

public Label(int x, int y, string caption) {
this.x = x;
this.y = y;
this.caption = caption;

}

public int X {
get { return x; }

}

public int Y {
get { return y; }

}

public Point Location {
get { return new Point(x, y); }

}

public string Caption {
get { return caption; }

}
}

Here, the Label class uses two int fields, x and y, to store its location. The location is publicly exposed both
as an X and a Y property and as a Location property of type Point. If, in a future version of Label , it
becomes more convenient to store the location as a Point internally, the change can be made without affecting
the public interface of the class:

C# LANGUAGE REFERENCE

190 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

class Label
{

private Point location;
private string caption;

public Label(int x, int y, string caption) {
this.location = new Point(x, y);
this.caption = caption;

}

public int X {
get { return location.x; }

}

public int Y {
get { return location.y; }

}

public Point Location {
get { return location; }

}

public string Caption {
get { return caption; }

}
}

Had x and y instead been public readonly fields, it would have been impossible to make such a change to
the Label class.

Exposing state through properties is not necessarily any less efficient than exposing fields directly. In particular,
when a property accessor is non-virtual and contains only a small amount of code, the execution environment
may replace calls to accessors with the actual code of the accessors. This process is known as inlining, and it
makes property access as efficient as field access, yet preserves the increased flexibility of properties.

Since invoking a get accessor is conceptually equivalent to reading the value of a field, it is considered bad
programming style for get accessors to have observable side-effects. In the example

class Counter
{

private int next;

public int Next {
get { return next++; }

}
}

the value of the Next property depends on the number of times the property has previously been accessed. Thus,
accessing the property produces an observable side-effect, and the property should instead be implemented as a
method.

The “no side-effects” convention for get accessors doesn’t mean that get accessors should always be written to
simply return values stored in fields. Indeed, get accessors often compute the value of a property by accessing
multiple fields or invoking methods. However, a properly designed get accessor performs no actions that cause
observable changes in the state of the object.

Properties can be used to delay initialization of a resource until the moment it is first referenced. For example:

public class Console
{

private static TextReader reader;
private static TextWriter writer;
private static TextWriter error;

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 191

public static TextReader In {
get {

if (reader == null) {
reader = new StreamReader(File.OpenStandardInput());

}
return reader;

}
}

public static TextWriter Out {
get {

if (writer == null) {
writer = new StreamWriter(File.OpenStandardOutput());

}
return writer;

}
}

public static TextWriter Error {
get {

if (error == null) {
error = new StreamWriter(File.OpenStandardError());

}
return error;

}
}

}

The Console class contains three properties, In, Out, and Error , that represent the standard input, output, and
error devices. By exposing these members as properties, the Console class can delay their initialization until
they are actually used. For example, upon first referencing the Out property, as in

Console.Out.WriteLine("Hello world");

the underlying TextWriter for the output device is created. But if the application makes no reference to the In
and Error properties, then no objects are created for those devices.

10.6.3 Virtual, override, and abstract accessors
Provided a property is not static , a property declaration may include a virtual modifier or an abstract
modifier on either or both of its accessors. There is no requirement that the modifiers be the same for each
accessor. For example, it is possible for a property to have a non-virtual get accessor and a virtual set
accessor.

The virtual accessors of an inherited property can be overridden in a derived class by including a property
declaration that specifies override directives on its accessors. This is known as an overriding property
declaration. An overriding property declaration does not declare a new property. Instead, it simply specializes
the implementations of the virtual accessors of an existing property.

It is an error to mix override and non-override accessors in a property declaration. If a property declaration
includes both accessors, then both must include an override directive or both must omit it.

An overriding property declaration must specify the exact same access modifiers, type, and name as the
inherited property, and it can override only those inherited accessors that are virtual. For example, if an inherited
property has a non-virtual get accessor and a virtual set accessor, then an overriding property declaration can
only include an override set accessor.

When both accessors of an inherited property are virtual, an overriding property declaration is permitted to only
override one of the accessors.

C# LANGUAGE REFERENCE

192 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Except for differences in declaration and invocation syntax, virtual, override, and abstract accessors behave
exactly like a virtual, override and abstract methods. Specifically, the rules described in §10.5.3, §10.5.4, and
§10.5.5 apply as if accessors were methods of a corresponding form:

• A get accessor corresponds to a parameterless method with a return value of the property type and a set of
modifiers formed by combining the modifiers of the property and the modifier of the accessor.

• A set accessor corresponds to a method with a single value parameter of the property type, a void return
type, and a set of modifiers formed by combining the modifiers of the property and the modifier of the
accessor.

In the example

abstract class A
{

int y;

public int X {
virtual get {

return 0;
}

}

public int Y {
get {

return y;
}
virtual set {

y = value;
}

}

protected int Z {
abstract get;
abstract set;

}
}

X is a read-only property with a virtual get accessor, Y is a read-write property with a non-virtual get accessor
and a virtual set accessor, and Z is a read-write property with abstract get and set accessors. Because the
containing class is abstract, Z is permitted to have abstract accessors.

A class that derives from A is shown below:

class B: A
{

int z;

public int X {
override get {

return base.X + 1;
}

}

public int Y {
override set {

base.Y = value < 0? 0: value;
}

}

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 193

protected int Z {
override get {

return z;
}
override set {

z = value;
}

}
}

Here, because their accessors specify the override modifier, the declarations of X, Y, and Z are overriding
property declarations. Each property declaration exactly matches the access modifiers, type, and name of the
corresponding inherited property. The get accessor of X and the set accessor of Y use the base keyword to
access the inherited accessors. The declaration of Z overrides both abstract accessors—thus, there are no
outstanding abstract function members in B, and B is permitted to be a non-abstract class.

10.7 Events
Events permit a class to declare notifications for which clients can attach executable code in the form of event
handlers. Events are declared using event-declarations:

event-declaration:
event-field-declaration
event-property-declaration

event-field-declaration:
attributesopt event-modifiersopt event type variable-declarators ;

event-property-declaration:
attributesopt event-modifiersopt event type member-name { accessor-declarations }

event-modifiers:
event-modifier
event-modifiers event-modifier

event-modifier:
new
public
protected
internal
private
static

An event declaration is either an event-field-declaration or an event-property-declaration. In both cases, the
declaration may include set of attributes (§17), a new modifier (§10.2.2), a valid combination of the four access
modifiers (§10.2.3), and a static modifier (§10.2.5).

The type of an event declaration must be a delegate-type (§15), and that delegate-type must be at least as
accessible as the event itself (§3.3.4).

An event field declaration corresponds to a field-declaration (§10.4) that declares one or more fields of a
delegate type. The readonly modifier is not permitted in an event field declaration.

An event property declaration corresponds to a property-declaration (§10.6) that declares a property of a
delegate type. The member-name and accessor-declarations are equivalent to those of a property declaration,
except that an event property declaration must include both a get accessor and a set accessor, and that the
accessors are not permitted to include virtual, override, or abstract modifiers.

C# LANGUAGE REFERENCE

194 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Within the program text of the class or struct that contains an event member declaration, the event member
corresponds exactly to a private field or property of a delegate type, and the member can thus be used in any
context that permits a field or property.

Outside the program text of the class or struct that contains an event member declaration, the event member can
only be used as the left hand operand of the += and -= operators (§7.13.3). These operators are used to attach or
remove event handlers to or from an event member, and the access modifiers of the event member control the
contexts in which the operations are permitted.

Since += and -= are the only operations that are permitted on an event member outside the type that declares the
event member, external code can append and remove handlers for an event, but cannot in any other way obtain
or modify the value of the underlying event field or event property.

In the example

public delegate void EventHandler(object sender, Event e);

public class Button: Control
{

public event EventHandler Click;

protected void OnClick(Event e) {
if (Click != null) Click(this, e);

}

public void Reset() {
Click = null;

}
}

there are no restrictions on usage of the Click event field within the Button class. As the example
demonstrates, the field can be examined, modified, and used in delegate invocation expressions. The OnClick
method in the Button class “raises” the Click event. The notion of raising an event is precisely equivalent to
invoking the delegate represented by the event member—thus, there are no special language constructs for
raising events. Note that the delegate invocation is preceded by a check that ensures the delegate is non-null.

Outside the declaration of the Button class, the Click member can only be used on the left hand side of the +=
and -= operators, as in

b.Click += new EventHandler(...);

which appends a delegate to the invocation list of the Click event, and

b.Click -= new EventHandler(...);

which removes a delegate from the invocation list of the Click event.

In an operation of the form x += y or x -= y, when x is an event member and the reference takes place outside
the type that contains the declaration of x, the result of the operation is void (as opposed to the value of x after
the assignment). This rule prohibits external code from indirectly examining the underlying delegate of an event
member.

The following example shows how event handlers are attached to instances of the Button class above:

public class LoginDialog: Form
{

Button OkButton;
Button CancelButton;

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 195

public LoginDialog() {
OkButton = new Button(...);
OkButton.Click += new EventHandler(OkButtonClick);
CancelButton = new Button(...);
CancelButton.Click += new EventHandler(CancelButtonClick);

}

void OkButtonClick(object sender, Event e) {
// Handle OkButton.Click event

}

void CancelButtonClick(object sender, Event e) {
// Handle CancelButton.Click event

}
}

Here, the LoginDialog constructor creates two Button instances and attaches event handlers to the Click
events.

Event members are typically fields, as in the Button example above. In cases where the storage cost of one
field per event is not acceptable, a class can declare event properties instead of event fields and use a private
mechanism for storing the underlying delegates. (In scenarios where most events are unhandled, using a field
per event may not be acceptable. The ability to use a properties rather than fields allows for space vs. speed
tradeoffs to be made by the developer.)

In the example

class Control: Component
{

// Unique keys for events

static readonly object mouseDownEventKey = new object();
static readonly object mouseUpEventKey = new object();

// Return event handler associated with key

protected Delegate GetEventHandler(object key) {...}

// Set event handler associated with key

protected void SetEventHandler(object key, Delegate handler) {...}

// MouseDown event property

public event MouseEventHandler MouseDown {
get {

return (MouseEventHandler)GetEventHandler(mouseDownEventKey);
}
set {

SetEventHandler(mouseDownEventKey, value);
}

}

// MouseUp event property

public event MouseEventHandler MouseUp {
get {

return (MouseEventHandler)GetEventHandler(mouseUpEventKey);
}
set {

SetEventHandler(mouseUpEventKey, value);
}

}
}

the Control class implements an internal storage mechanism for events. The SetEventHandler method
associates a delegate value with a key, and the GetEventHandler method returns the delegate currently

C# LANGUAGE REFERENCE

196 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

associated with a key. Presumably the underlying storage mechanism is designed such that there is no cost for
associating a null delegate value with a key, and thus unhandled events consume no storage.

Implementation note

In the .NET runtime, when a class declares an event member X of a delegate type T, it is an error for the same class to also
declare a method with one of the following signatures:

void add_X(T handler);
void remove_X(T handler);

The .NET runtime reserves these signatures for compatibility with programming languages that do not provide operators
or other language constructs for attaching and removing event handlers. Note that this restriction does not imply that a C#
program can use method syntax to attach or remove event handlers. It merely means that events and methods that follow
this pattern are mutually exclusive within the same class.

When a class declares an event member, the C# compiler automatically generates the add_X and remove_X methods
mentioned above. For example, the declaration

class Button
{

public event EventHandler Click;
}

can be thought of as

class Button
{

private EventHandler Click;

public void add_Click(EventHandler handler) {
Click += handler;

}

public void remove_Click(EventHandler handler) {
Click -= handler;

}
}

The compiler furthermore generates an event member that references the add_X and remove_X methods. From the point
of view of a C# program, these mechanics are purely implementation details, and they have no observable effects other
than the add_X and remove_X signatures being reserved.

10.8 Indexers
Indexers permit instances of a class to be indexed in the same way as arrays. Indexers are declared using
indexer-declarations:

indexer-declaration:
attributesopt indexer-modifiersopt indexer-declarator { accessor-declarations }

indexer-modifiers:
indexer-modifier
indexer-modifiers indexer-modifier

indexer-modifier:
new
public
protected
internal
private

indexer-declarator:
type this [formal-index-parameter-list]
type interface-type . this [formal-index-parameter-list]

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 197

formal-index-parameter-list:
formal-index-parameter
formal-index-parameter-list , formal-index-parameter

formal-index-parameter:
attributesopt type identifier

An indexer-declaration may include set of attributes (§17), a new modifier (§10.2.2), and a valid combination
of the four access modifiers (§10.2.3).

The type of an indexer declaration specifies the element type of the indexer introduced by the declaration.
Unless the indexer is an explicit interface member implementation, the type is followed by the keyword this.
For an explicit interface member implementation, the type is followed by an interface-type, a “.”, and the
keyword this. Unlike other members, indexers do not have user-defined names.

The formal-index-parameter-list specifies the parameters of the indexer. The formal parameter list of an indexer
corresponds to that of a method (§10.5.1), except that at least one parameter must be specified, and that the ref
and out parameter modifiers are not permitted.

The type of an indexer and each of the types referenced in the formal-index-parameter-list must be at least as
accessible as the indexer itself (§3.3.4).

The accessor-declarations, which must be enclosed in “{” and “}” tokens, declare the accessors of the indexer.
The accessors specify the executable statements associated with reading and writing indexer elements.

Even though the syntax for accessing an indexer element is the same as that for an array element, an indexer
element is not classified as a variable. Thus, it is not possible to pass an indexer element as a ref or out
parameter.

The formal parameter list of an indexer defines the signature (§3.4) of the indexer. Specifically, the signature of
an indexer consists of the number and types of its formal parameters. The element type is not part of an
indexer’s signature, nor are the names of the formal parameters.

The signature of an indexer must differ from the signatures of all other indexers declared in the same class.

Indexers and properties are very similar in concept, but differ in the following ways:

• A property is identified by its name, whereas an indexer is identified by its signature.

• A property is accessed through a simple-name (§7.5.2) or a member-access (§7.5.4), whereas an indexer
element is accessed through an element-access (§7.5.6.2).

• A property can be a static member, whereas an indexer is always an instance member.

• A get accessor of a property corresponds to a method with no parameters, whereas a get accessor of an
indexer corresponds to a method with the same formal parameter list as the indexer.

• A set accessor of a property corresponds to a method with a single parameter named value, whereas a
set accessor of an indexer corresponds to a method with the same formal parameter list as the indexer, plus
an additional parameter named value.

• It is an error for an indexer accessor to declare a local variable with the same name as an indexer parameter.

With these differences in mind, all rules defined in §10.6.2 and §10.6.3 apply to indexer accessors as well as
property accessors.

Implementation note

In the .NET runtime, when a class declares an indexer of type T with a formal parameter list P, it is an error for the same
class to also declare a method with one of the following signatures:

C# LANGUAGE REFERENCE

198 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

T get_Item(P);
void set_Item(P, T value);

The .NET runtime reserves these signatures for compatibility with programming languages that do not support indexers.
Note that this restriction does not imply that a C# program can use method syntax to access indexers or indexer syntax to
access methods. It merely means that indexers and methods that follow this pattern are mutually exclusive within the same
class.

The example below declares a BitArray class that implements an indexer for accessing the individual bits in
the bit array.

class BitArray
{

int[] bits;
int length;

public BitArray(int length) {
if (length < 0) throw new ArgumentException();
bits = new int[((length - 1) >> 5) + 1];
this.length = length;

}

public int Length {
get { return length; }

}

public bool this[int index] {
get {

if (index < 0 || index >= length) {
throw new IndexOutOfRangeException();

}
return (bits[index >> 5] & 1 << index) != 0;

}
set {

if (index < 0 || index >= length) {
throw new IndexOutOfRangeException();

}
if (value) {

bits[index >> 5] |= 1 << index;
}
else {

bits[index >> 5] &= ~(1 << index);
}

}
}

}

An instance of the BitArray class consumes substantially less memory than a corresponding bool[] (each
value occupies only one bit instead of one byte), but it permits the same operations as a bool[].

The following CountPrimes class uses a BitArray and the classical “sieve” algorithm to compute the number
of primes between 1 and a given maximum:

class CountPrimes
{

static int Count(int max) {
BitArray flags = new BitArray(max + 1);
int count = 1;
for (int i = 2; i <= max; i++) {

if (!flags[i]) {
for (int j = i * 2; j <= max; j += i) flags[j] = true;
count++;

}
}
return count;

}

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 199

static void Main(string[] args) {
int max = int.Parse(args[0]);
int count = Count(max);
Console.WriteLine("Found {0} primes between 1 and {1}", count, max);

}
}

Note that the syntax for accessing elements of the BitArray is precisely the same as for a bool[].

10.8.1 Indexer overloading
The indexer overload resolution rules are described in §7.4.2.

10.9 Operators
Operators permit a class to define expression operators that can be applied to instances of the class. Operators
are declared using operator-declarations:

operator-declaration:
attributesopt operator-modifiers operator-declarator block

operator-modifiers:
public static
static public

operator-declarator:
unary-operator-declarator
binary-operator-declarator
conversion-operator-declarator

unary-operator-declarator:
type operator overloadable-unary-operator (type identifier)

overloadable-unary-operator: one of
+ - ! ~ ++ -- true false

binary-operator-declarator:
type operator overloadable-binary-operator (type identifier , type identifier)

overloadable-binary-operator: one of
+ - * / % & | ^ << >> == != > < >= <=

conversion-operator-declarator:
implicit operator type (type identifier)
explicit operator type (type identifier)

There are three categories of operators: Unary operators (§10.9.1), binary operators (§10.9.2), and conversion
operators (§10.9.3).

The following rules apply to all operator declarations:

• An operator declaration must include both a public and a static modifier, and is not permitted to include
any other modifiers.

• The parameter(s) of an operator must be value parameters. It is an error to for an operator declaration to
specify ref or out parameters.

• The signature of an operator must differ from the signatures of all other operators declared in the same class.

• All types referenced in an operator declaration must be at least as accessible as the operator itself (§3.3.4).

C# LANGUAGE REFERENCE

200 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Each operator category imposes additional restrictions, as described in the following sections.

Like other members, operators declared in a base class are inherited by derived classes. Because operator
declarations always require the class or struct in which the operator is declared to participate in the signature of
the operator, it is not possible for an operator declared in a derived class to hide an operator declared in a base
class. Thus, the new modifier is never required, and therefore never permitted, in an operator declaration.

For all operators, the operator declaration includes a block which specifies the statements to execute when the
operator is invoked. The block of an operator must conform to the rules for value-returning methods described in
§10.5.7.

Additional information on unary and binary operators can be found in §7.2.

Additional information on conversion operators can be found in §6.4.

10.9.1 Unary operators
The following rules apply to unary operator declarations, where T denotes the class or struct type that contains
the operator declaration:

• A unary +, -, !, or ~ operator must take a single parameter of type T and can return any type.

• A unary ++ or -- operator must take a single parameter of type T and must return type T.

• A unary true or false operator must take a single parameter of type T and must return type bool.

The signature of a unary operator consists of the operator token (+, -, !, ~, ++, -- , true, or false) and the
type of the single formal parameter. The return type is not part of a unary operator’s signature, nor is the name
of the formal parameter.

The true and false unary operators require pair-wise declaration. An error occurs if a class declares one of
these operators without also declaring the other. The true and false operators are further described in §7.16.

10.9.2 Binary operators
A binary operator must take two parameters, at least one of which must be of the class or struct type in which
the operator is declared. A binary operator can return any type.

The signature of a binary operator consists of the operator token (+, -, *, /, %, & , |, ^, << , >>, == , !=, >, < , >=,
or <=) and the types of the two formal parameters. The return type is not part of a binary operator’s signature,
nor are the names of the formal parameters.

Certain binary operators require pair-wise declaration. For every declaration of either operator of a pair, there
must be a matching declaration of the other operator of the pair. Two operator declarations match when they
have the same return type and the same type for each parameter. The following operators require pair-wise
declaration:

• operator == and operator !=

• operator > and operator <

• operator >= and operator <=

10.9.3 Conversion operators
A conversion operator declaration introduces a user-defined conversion (§6.4) which augments the pre-defined
implicit and explicit conversions.

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 201

A conversion operator declaration that includes the implicit keyword introduces a user-defined implicit
conversion. Implicit conversions can occur in a variety of situations, including function member invocations,
cast expressions, and assignments. This is described further in §6.1.

A conversion operator declaration that includes the explicit keyword introduces a user-defined explicit
conversion. Explicit conversions can occur in cast expressions, and are described further in §6.2.

A conversion operator converts from a source type, indicated by the parameter type of the conversion operator,
to a target type, indicated by the return type of the conversion operator. A class or struct is permitted to declare a
conversion from a source type S to a target type T provided all of the following are true:

• S and T are different types.

• Either S or T is the class or struct type in which the operator declaration takes place.

• Neither S nor T is object or an interface-type.

• T is not a base class of S, and S is not a base class of T.

From the second rule it follows that a conversion operator must either convert to or from the class or struct type
in which the operator is declared. For example, it is possible for a class or struct type C to define a conversion
from C to int and from int to C, but not from int to bool.

It is not possible to redefine a pre-defined conversion. Thus, conversion operators are not allowed to convert
from or to object because implicit and explicit conversions already exist between object and all other types.
Likewise, neither of the source and target types of a conversion can be a base type of the other, since a
conversion would then already exist.

User-defined conversions are not allowed to convert from or to interface-types. This restriction in particular
ensures that no user-defined transformations occur when converting to an interface-type, and that a conversion
to an interface-type succeeds only if the object being converted actually implements the specified interface-type.

The signature of a conversion operator consists of the source type and the target type. (Note that this is the only
form of member for which the return type participates in the signature.) The implicit or explicit
classification of a conversion operator is not part of the operator’s signature. Thus, a class or struct cannot
declare both an implicit and an explicit conversion operator with the same source and target types.

In general, user-defined implicit conversions should be designed to never throw exceptions and never lose
information. If a user-defined conversion can give rise to exceptions (for example because the source argument
is out of range) or loss of information (such as discarding high-order bits), then that conversion should be
defined as an explicit conversion.

In the example

public struct Digit
{

byte value;

public Digit(byte value) {
if (value < 0 || value > 9) throw new ArgumentException();
this.value = value;

}

public static implicit operator byte(Digit d) {
return d.value;

}

public static explicit operator Digit(byte b) {
return new Digit(b);

}
}

C# LANGUAGE REFERENCE

202 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

the conversion from Digit to byte is implicit because it never throws exceptions or loses information, but the
conversion from byte to Digit is explicit since Digit can only represent a subset of the possible values of a
byte.

10.10 Instance constructors
Constructors implement the actions required to initialize instances of a class. Constructors are declared using
constructor-declarations:

constructor-declaration:
attributesopt constructor-modifiersopt constructor-declarator block

constructor-modifiers:
constructor-modifier
constructor-modifiers constructor-modifier

constructor-modifier:
public
protected
internal
private

constructor-declarator:
identifier (formal-parameter-listopt) constructor-initializeropt

constructor-initializer:
: base (argument-listopt)
: this (argument-listopt)

A constructor-declaration may include set of attributes (§17) and a valid combination of the four access
modifiers (§10.2.3).

The identifier of a constructor-declarator must name the class in which the constructor is declared. If any other
name is specified, an error occurs.

The optional formal-parameter-list of a constructor is subject to the same rules as the formal-parameter-list of a
method (§10.5). The formal parameter list defines the signature (§3.4) of a constructor and governs the process
whereby overload resolution (§7.4.2) selects a particular constructor in an invocation.

Each of the types referenced in the formal-parameter-list of a constructor must be at least as accessible as the
constructor itself (§3.3.4).

The optional constructor-initializer specifies another constructor to invoke before executing the statements
given in the block of this constructor. This is described further in §10.10.1.

The block of a constructor declaration specifies the statements to execute in order to initialize a new instance of
the class. This corresponds exactly to the block of an instance method with a void return type (§10.5.7).

Constructors are not inherited. Thus, a class has no other constructors than those that are actually declared in the
class. If a class contains no constructor declarations, a default constructor is automatically provided (§10.10.4).

Constructors are invoked by object-creation-expressions (§7.5.10.1) and through constructor-initializers.

10.10.1 Constructor initializers
All constructors (except for the constructors of class object) implicitly include an invocation of another
constructor immediately before the first statement in the block of the constructor. The constructor to implicitly
invoke is determined by the constructor-initializer:

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 203

• A constructor initializer of the form base(...) causes a constructor from the direct base class to be
invoked. The constructor is selected using the overload resolution rules of §7.4.2. The set of candidate
constructors consists of all accessible constructors declared in the direct base class. If the set of candidate
constructors is empty, or if a single best constructor cannot be identified, an error occurs.

• A constructor initializer of the form this(...) causes a constructor from the class itself to be invoked.
The constructor is selected using the overload resolution rules of §7.4.2. The set of candidate constructors
consists of all accessible constructors declared in the class itself. If the set of candidate constructors is
empty, or if a single best constructor cannot be identified, an error occurs. If a constructor declaration
includes a constructor initializer that invokes the constructor itself, an error occurs.

If a constructor has no constructor initializer, a constructor initializer of the form base() is implicitly provided.
Thus, a constructor declaration of the form

C(...) {...}

is exactly equivalent to

C(...): base() {...}

The scope of the parameters given by the formal-parameter-list of a constructor declaration includes the
constructor initializer of that declaration. Thus, a constructor initializer is permitted to access the parameters of
the constructor. For example:

class A
{

public A(int x, int y) {}
}

class B: A
{

public B(int x, int y): base(x + y, x - y) {}
}

A constructor initializer cannot access the instance being created. It is therefore an error to reference this in an
argument expression of the constructor initializer, as is it an error for an argument expression to reference any
instance member through a simple-name.

10.10.2 Instance variable initializers
When a constructor has no constructor initializer or a constructor initializer of the form base(...), the
constructor implicitly performs the initializations specified by the variable-initializers of the instance fields
declared in the class. This corresponds to a sequence of assignments that are executed immediately upon entry to
the constructor and before the implicit invocation of the direct base class constructor. The variable initializers
are executed in the textual order they appear in the class declaration.

10.10.3 Constructor execution
It is useful to think of instance variable initializers and constructor initializers as statements that are
automatically inserted before the first statement in the block of a constructor. The example

class A
{

int x = 1, y = -1, count;

public A() {
count = 0;

}

C# LANGUAGE REFERENCE

204 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

public A(int n) {
count = n;

}
}

class B: A
{

double sqrt2 = Math.Sqrt(2.0);
ArrayList items = new ArrayList(100);
int max;

public B(): this(100) {
items.Add("default");

}

public B(int n): base(n – 1) {
max = n;

}
}

contains several variable initializers and also contains constructor initializers of both forms (base and this).
The example corresponds to the code shown below, where each comment indicates an automatically inserted
statement (the syntax used for the automatically inserted constructor invocations isn’t valid, but merely serves to
illustrate the mechanism).

class A
{

int x, y, count;

public A() {
x = 1; // Variable initializer
y = -1; // Variable initializer
object(); // Invoke object() constructor
count = 0;

}

public A(int n) {
x = 1; // Variable initializer
y = -1; // Variable initializer
object(); // Invoke object() constructor
count = n;

}
}

class B: A
{

double sqrt2;
ArrayList items;
int max;

public B(): this(100) {
B(100); // Invoke B(int) constructor
items.Add("default");

}

public B(int n): base(n – 1) {
sqrt2 = Math.Sqrt(2.0); // Variable initializer
items = new ArrayList(100); // Variable initializer
A(n – 1); // Invoke A(int) constructor
max = n;

}
}

Note that variable initializers are transformed into assignment statements, and that these assignment statements
are executed before the invocation of the base class constructor. This ordering ensures that all instance fields are
initialized by their variable initializers before any statements that have access to the instance are executed. For
example:

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 205

class A
{

public A() {
PrintFields();

}

public virtual void PrintFields() {}
}

class B: A
{

int x = 1;
int y;

public B() {
y = -1;

}

public override void PrintFields() {
Console.WriteLine("x = {0}, y = {1}", x, y);

}
}

When new B() is used to create an instance of B, the following output is produced:

x = 1, y = 0

The value of x is 1 because the variable initializer is executed before the base class constructor is invoked.
However, the value of y is 0 (the default value of an int) because the assignment to y is not executed until after
the base class constructor returns.

10.10.4 Default constructors
If a class contains no constructor declarations, a default constructor is automatically provided. The default
constructor is always of the form

public C(): base() {}

where C is the name of the class. The default constructor simply invokes the parameterless constructor of the
direct base class. If the direct base class does not have an accessible parameterless constructor, an error occurs.
In the example

class Message
{

object sender;
string text;

}

a default constructor is provided because the class contains no constructor declarations. Thus, the example is
precisely equivalent to

class Message
{

object sender;
string text;

public Message(): base() {}
}

10.10.5 Private constructors
When a class declares only private constructors it is not possible for other classes to derive from the class or
create instances of the class (an exception being classes nested within the class). Private constructors are
commonly used in classes that contain only static members. For example:

C# LANGUAGE REFERENCE

206 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

public class Trig
{

private Trig() {} // Prevent instantiation

public const double PI = 3.14159265358979323846;

public static double Sin(double x) {...}
public static double Cos(double x) {...}
public static double Tan(double x) {...}

}

The Trig class provides a grouping of related methods and constants, but is not intended to be instantiated. It
therefore declares a single private constructor. Note that at least one private constructor must be declared to
suppress the automatic generation of a default constructor (which always has public access).

10.10.6 Optional constructor parameters
The this(...) form of constructor initializers is commonly used in conjunction with overloading to
implement optional constructor parameters. In the example

class Text
{

public Text(): this(0, 0, null) {}

public Text(int x, int y): this(x, y, null) {}

public Text(int x, int y, string s) {
// Actual constructor implementation

}
}

the first two constructors merely provide the default values for the missing arguments. Both use a this(...)
constructor initializer to invoke the third constructor, which actually does the work of initializing the new
instance. The effect is that of optional constructor parameters:

Text t1 = new Text(); // Same as Text(0, 0, null)
Text t2 = new Text(5, 10); // Same as Text(5, 10, null)
Text t3 = new Text(5, 20, "Hello");

10.11 Destructors
Destructors implement the actions required to destruct instances of a class. Destructors are declared using
destructor-declarations:

destructor-declaration:
attributesopt ~ identifier () block

A destructor-declaration may include set of attributes (§17).

The identifier of a destructor-declarator must name the class in which the destructor is declared. If any other
name is specified, an error occurs.

The block of a destructor declaration specifies the statements to execute in order to initialize a new instance of
the class. This corresponds exactly to the block of an instance method with a void return type (§10.5.7).

Destructors are not inherited. Thus, a class has no other destructors than those that are actually declared in the
class.

Destructors are invoked automatically, and cannot be invoked explicitly. An instance becomes eligible for
destruction when it is no longer possible for any code to use the instance. Execution of the destructor or
destructors for the instance may occur at any time after the instance becomes eligible for destruction. When an
instance is destructed, the destructors in an inheritance chain are called in order, from most derived to least
derived.

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 207

10.12 Static constructors
Static constructors implement the actions required to initialize a class. Static constructors are declared using
static-constructor-declarations:

static-constructor-declaration:
attributesopt static identifier () block

A static-constructor-declaration may include set of attributes (§17).

The identifier of a static-constructor-declarator must name the class in which the static constructor is declared.
If any other name is specified, an error occurs.

The block of a static constructor declaration specifies the statements to execute in order to initialize the class.
This corresponds exactly to the block of a static method with a void return type (§10.5.7).

Static constructors are not inherited.

Static constructors are invoked automatically, and cannot be invoked explicitly. The exact timing and ordering
of static constructor execution is not defined, though several guarantees are provided:

• The static constructor for a class is executed before any instance of the class is created.

• The static constructor for a class is executed before any static member of the class is referenced.

• The static constructor for a class is executed before the static constructor of any of its derived classes are
executed.

• The static constructor for a class never executes more than once.

The example

using System;

class Test
{

static void Main() {
A.F();
B.F();

}
}

class A
{

static A() {
Console.WriteLine("Init A");

}

public static void F() {
Console.WriteLine("A.F");

}
}

class B
{

static B() {
Console.WriteLine("Init B");

}

public static void F() {
Console.WriteLine("B.F");

}
}

could produce either the output:

C# LANGUAGE REFERENCE

208 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Init A
A.F
Init B
B.F

or the output:

Init B
Init A
A.F
B.F

because the exact ordering of static constructor execution is not defined.

The example

using System;

class Test
{

static void Main() {
Console.WriteLine("1");
B.G();
Console.WriteLine("2");

}
}

class A
{

static A() {
Console.WriteLine("Init A");

}
}

class B: A
{

static B() {
Console.WriteLine("Init B");

}

public static void G() {
Console.WriteLine("B.G");

}
}

is guaranteed to produce the output:

Init A
Init B
B.G

because the static constructor for the class A must execute before the static constructor of the class B, which
derives from it.

10.12.1 Class loading and initialization
It is possible to construct circular dependencies that allow static fields with variable initializers to be observed in
their default value state.

The example

class A
{

public static int X = B.Y + 1;
}

Chapter 10 Classes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 209

class B
{

public static int Y = A.X + 1;

static void Main() {
Console.WriteLine("X = {0}, Y = {1}", A.X, B.Y);

}
}

produces the output

X = 1, Y = 2

To execute the Main method, the system first loads class B. The static constructor of B proceeds to compute the
initial value of Y, which recursively causes A to be loaded because the value of A.X is referenced. The static
constructor of A in turn proceeds to compute the initial value of X, and in doing so fetches the default value of Y,
which is zero. A.X is thus initialized to 1. The process of loading A then completes, returning to the calculation
of the initial value of Y, the result of which becomes 2.

Had the Main method instead been located in class A, the example would have produced the output

X = 2, Y = 1

Circular references in static field initializers should be avoided since it is generally not possible to determine the
order in which classes containing such references are loaded.

Chapter 11 Structs

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 211

11. Structs

11.1 Struct declarations
struct-declaration:

attributesopt struct-modifiersopt struct identifier struct-interfacesopt struct-body ;opt

11.1.1 Struct modifiers

struct-modifiers:
struct-modifier
struct-modifiers struct-modifier

struct-modifier:
new
public
protected
internal
private

11.1.2 Interfaces

struct-interfaces:
: interface-type-list

11.1.3 Struct body

struct-body:
{ struct-member-declarationsopt }

11.2 Struct members
struct-member-declarations:

struct-member-declaration
struct-member-declarations struct-member-declaration

struct-member-declaration:
class-member-declaration

11.3 Struct examples

11.3.1 Database integer type
The DBInt struct below implements an integer type that can represent the complete set of values of the int
type, plus an additional state that indicates an unknown value. A type with these characteristics is commonly
used in databases.

public struct DBInt
{

// The Null member represents an unknown DBInt value.

public static readonly DBInt Null = new DBInt();

C# LANGUAGE REFERENCE

212 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

// When the defined field is true, this DBInt represents a known value
// which is stored in the value field. When the defined field is false,
// this DBInt represents an unknown value, and the value field is 0.

int value;
bool defined;

// Private constructor. Creates a DBInt with a known value.

DBInt(int value) {
this.value = value;
this.defined = true;

}

// The IsNull property is true if this DBInt represents an unknown value.

public bool IsNull { get { return !defined; } }

// The Value property is the known value of this DBInt, or 0 if this
// DBInt represents an unknown value.

public int Value { get { return value; } }

// Implicit conversion from int to DBInt.

public static implicit operator DBInt(int x) {
return new DBInt(x);

}

// Explicit conversion from DBInt to int. Throws an exception if the
// given DBInt represents an unknown value.

public static explicit operator int(DBInt x) {
if (!x.defined) throw new InvalidOperationException();
return x.value;

}

public static DBInt operator +(DBInt x) {
return x;

}

public static DBInt operator -(DBInt x) {
return x.defined? new DBInt(-x.value): Null;

}

public static DBInt operator +(DBInt x, DBInt y) {
return x.defined && y.defined? new DBInt(x.value + y.value): Null;

}

public static DBInt operator -(DBInt x, DBInt y) {
return x.defined && y.defined? new DBInt(x.value - y.value): Null;

}

public static DBInt operator *(DBInt x, DBInt y) {
return x.defined && y.defined? new DBInt(x.value * y.value): Null;

}

public static DBInt operator /(DBInt x, DBInt y) {
return x.defined && y.defined? new DBInt(x.value / y.value): Null;

}

public static DBInt operator %(DBInt x, DBInt y) {
return x.defined && y.defined? new DBInt(x.value % y.value): Null;

}

public static DBBool operator ==(DBInt x, DBInt y) {
return x.defined && y.defined?

new DBBool(x.value == y.value): DBBool.Null;
}

Chapter 11 Structs

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 213

public static DBBool operator !=(DBInt x, DBInt y) {
return x.defined && y.defined?

new DBBool(x.value != y.value): DBBool.Null;
}

public static DBBool operator >(DBInt x, DBInt y) {
return x.defined && y.defined?

new DBBool(x.value > y.value): DBBool.Null;
}

public static DBBool operator <(DBInt x, DBInt y) {
return x.defined && y.defined?

new DBBool(x.value < y.value): DBBool.Null;
}

public static DBBool operator >=(DBInt x, DBInt y) {
return x.defined && y.defined?

new DBBool(x.value >= y.value): DBBool.Null;
}

public static DBBool operator <=(DBInt x, DBInt y) {
return x.defined && y.defined?

new DBBool(x.value <= y.value): DBBool.Null;
}

}

11.3.2 Database boolean type
The DBBool struct below implements a three-valued logical type. The possible values of this type are
DBBool.True, DBBool.False , and DBBool.Null, where the Null member indicates an unknown value.
Such three-valued logical types are commonly used in databases.

public struct DBBool
{

// The three possible DBBool values.

public static readonly DBBool Null = new DBBool(0);
public static readonly DBBool False = new DBBool(-1);
public static readonly DBBool True = new DBBool(1);

// Private field that stores –1, 0, 1 for False, Null, True.

int value;

// Private constructor. The value parameter must be –1, 0, or 1.

DBBool(int value) {
this.value = value;

}

// Properties to examine the value of a DBBool. Return true if this
// DBBool has the given value, false otherwise.

public bool IsNull { get { return value == 0; } }

public bool IsFalse { get { return value < 0; } }

public bool IsTrue { get { return value > 0; } }

// Implicit conversion from bool to DBBool. Maps true to DBBool.True and
// false to DBBool.False.

public static implicit operator DBBool(bool x) {
return x? True: False;

}

// Explicit conversion from DBBool to bool. Throws an exception if the
// given DBBool is Null, otherwise returns true or false.

C# LANGUAGE REFERENCE

214 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

public static explicit operator bool(DBBool x) {
if (x.value == 0) throw new InvalidOperationException();
return x.value > 0;

}

// Equality operator. Returns Null if either operand is Null, otherwise
// returns True or False.

public static DBBool operator ==(DBBool x, DBBool y) {
if (x.value == 0 || y.value == 0) return Null;
return x.value == y.value? True: False;

}

// Inequality operator. Returns Null if either operand is Null, otherwise
// returns True or False.

public static DBBool operator !=(DBBool x, DBBool y) {
if (x.value == 0 || y.value == 0) return Null;
return x.value != y.value? True: False;

}

// Logical negation operator. Returns True if the operand is False, Null
// if the operand is Null, or False if the operand is True.

public static DBBool operator !(DBBool x) {
return new DBBool(-x.value);

}

// Logical AND operator. Returns False if either operand is False,
// otherwise Null if either operand is Null, otherwise True.

public static DBBool operator &(DBBool x, DBBool y) {
return new DBBool(x.value < y.value? x.value: y.value);

}

// Logical OR operator. Returns True if either operand is True, otherwise
// Null if either operand is Null, otherwise False.

public static DBBool operator |(DBBool x, DBBool y) {
return new DBBool(x.value > y.value? x.value: y.value);

}

// Definitely true operator. Returns true if the operand is True, false
// otherwise.

public static bool operator true(DBBool x) {
return x.value > 0;

}

// Definitely false operator. Returns true if the operand is False, false
// otherwise.

public static bool operator false(DBBool x) {
return x.value < 0;

}
}

Chapter 12 Arrays

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 215

12. Arrays

An array is a data structure that contains a number of variables which are accessed through computed indices.
The variables contained in an array, also called the elements of the array, are all of the same type, and this type
is called the element type of the array.

An array has a rank which determines the number of indices associated with each array element. The rank of an
array is also referred to as the dimensions of the array. An array with a rank of one is called a single-dimensional
array, and an array with a rank greater than one is called a multi-dimensional array.

Each dimension of an array has an associated length which is an integral number greater than or equal to zero.
The dimension lengths are not part of the type of the array, but rather are established when an instance of the
array type is created at run-time. The length of a dimension determines the valid range of indices for that
dimension: For a dimension of length N , indices can range from 0 to N – 1 inclusive. The total number of
elements in an array is the product of the lengths of each dimension in the array. If one or more of the
dimensions of an array have a length of zero, the array is said to be empty.

The element type of an array can be any type, including an array type.

12.1 Array types
An array type is written as a non-array-type followed by one or more rank-specifiers:

array-type:
non-array-type rank-specifiers

non-array-type:
type

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank-specifier:
[dim-separatorsopt]

dim-separators:
,
dim-separators ,

A non-array-type is any type that is not itself an array-type.

The rank of an array type is given by the leftmost rank-specifier in the array-type: A rank-specifier indicates
that the array is an array with a rank of one plus the number of “,” tokens in the rank-specifier.

The element type of an array type is the type that results from deleting the leftmost rank-specifier:

• An array type of the form T[R] is an array with rank R and a non-array element type T.

• An array type of the form T[R][R1]...[RN] is an array with rank R and an element type T[R1]...[RN].

In effect, the rank-specifiers are read from left to right before the final non-array element type. For example, the
type int[][,,][,] is a single-dimensional array of three-dimensional arrays of two-dimensional arrays of
int.

C# LANGUAGE REFERENCE

216 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Arrays with a rank of one are called single-dimensional arrays. Arrays with a rank greater than one are called
multi-dimensional arrays, and are also referred to as two-dimensional arrays, three-dimensional arrays, and so
on.

At run-time, a value of an array type can be null or a reference to an instance of that array type.

12.1.1 The System.Array type
The System.Array type is the abstract base type of all array types. An implicit reference conversion (§6.1.4)
exists from any array type to System.Array, and an explicit reference conversion (§6.2.3) exists from
System.Array to any array type. Note that System.Array is itself not an array-type. Rather, it is a class-type
from which all array-types are derived.

At run-time, a value of type System.Array can be null or a reference to an instance of any array type.

12.2 Array creation
Array instances are created by array-creation-expressions (§7.5.10.2) or by field or local variable declarations
that include an array-initializer (§12.6).

When an array instance is created, the rank and length of each dimension are established and then remain
constant for the entire lifetime of the instance. In other words, it is not possible to change the rank of an existing
array instance, nor is it possible to resize its dimensions.

An array instance created by an array-creation-expression is always of an array type. The System.Array type
is an abstract type that cannot be instantiated.

Elements of arrays created by array-creation-expressions are always initialized to their default value (§5.2).

12.3 Array element access
Array elements are accessed using element-access expressions (§7.5.6.1) of the form A[I1, I2, ..., IN], where
A is an expression of an array type and each IX is an expression of type int. The result of an array element
access is a variable, namely the array element selected by the indices.

The elements of an array can be enumerated using a foreach statement (§8.8.4).

12.4 Array members
Every array type inherits the members declared by the System.Array type.

12.5 Array covariance
For any two reference-types A and B, if an implicit reference conversion (§6.1.4) or explicit reference conversion
(§6.2.3) exists from A to B, then the same reference conversion also exists from the array type A[R] to the array
type B[R], where R is any given rank-specifier (but the same for both array types). This relationship is known as
array covariance. Array covariance in particular means that a value of an array type A[R] may actually be a
reference to an instance of an array type B[R], provided an implicit reference conversion exists from B to A.

Because of array covariance, assignments to elements of reference type arrays include a run-time check which
ensures that the value being assigned to the array element is actually of a permitted type (§7.13.1). For example:

class Test
{

static void Fill(object[] array, int index, int count, object value) {
for (int i = index; i < index + count; i++) array[i] = value;

}

Chapter 12 Arrays

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 217

static void Main() {
string[] strings = new string[100];
Fill(strings, 0, 100, "Undefined");
Fill(strings, 0, 10, null);
Fill(strings, 90, 10, 0);

}
}

The assignment to array[i] in the Fill method implicitly includes a run-time check which ensures that the
object referenced by value is either null or an instance of a type that is compatible with the actual element
type of array. In Main, the first two invocations of Fill succeed, but the third invocation causes an
ArrayTypeMismatchException to be thrown upon executing the first assignment to array[i]. The
exception occurs because a boxed int cannot be stored in a string array.

Array covariance specifically does not extend to arrays of value-types. For example, no conversion exists that
permits an int[] to be treated as an object[].

12.6 Array initializers
Array initializers may be specified in field declarations (§10.4), local variable declarations (§8.5.1), and array
creation expressions (§7.5.10.2):

array-initializer:
{ variable-initializer-listopt }
{ variable-initializer-list , }

variable-initializer-list:
variable-initializer
variable-initializer-list , variable-initializer

variable-initializer:
expression
array-initializer

An array initializer consists of a sequence of variable initializers, enclosed by “{”and “}” tokens and separated
by “,” tokens. Each variable initializer is an expression or, in the case of a multi-dimensional array, a nested
array initializer.

The context in which an array initializer is used determines the type of the array being initialized. In an array
creation expression, the array type immediately precedes the initializer. In a field or variable declaration, the
array type is the type of the field or variable being declared. When an array initializer is used in a field or
variable declaration, such as:

int[] a = {0, 2, 4, 6, 8};

it is simply shorthand for an equivalent array creation expression:

int[] a = new int[] {0, 2, 4, 6, 8}

For a single-dimensional array, the array initializer must consist of a sequence of expressions that are
assignment compatible with the element type of the array. The expressions initialize array elements in increasing
order, starting with the element at index zero. The number of expressions in the array initializer determines the
length of the array instance being created. For example, the array initializer above creates an int[] instance of
length 5 and then initializes the instance with the following values:

a[0] = 0; a[1] = 2; a[2] = 4; a[3] = 6; a[4] = 8;

For a multi-dimensional array, the array initializer must have as many levels of nesting as there are dimensions
in the array. The outermost nesting level corresponds to the leftmost dimension and the innermost nesting level
corresponds to the rightmost dimension. The length of each dimension of the array is determined by the number

C# LANGUAGE REFERENCE

218 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

of elements at the corresponding nesting level in the array initializer. For each nested array initializer, the
number of elements must be the same as the other array initializers at the same level. The example:

int[,] b = {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}};

creates a two-dimensional array with a length of five for the leftmost dimension and a length of two for the
rightmost dimension:

int[,] b = new int[5, 2];

and then initializes the array instance with the following values:

b[0, 0] = 0; b[0, 1] = 1;
b[1, 0] = 2; b[1, 1] = 3;
b[2, 0] = 4; b[2, 1] = 5;
b[3, 0] = 6; b[3, 1] = 7;
b[4, 0] = 8; b[4, 1] = 9;

When an array creation expression includes both explicit dimension lengths and an array initializer, the lengths
must be constant expressions and the number of elements at each nesting level must match the corresponding
dimension length. Some examples:

int i = 3;
int[] x = new int[3] {0, 1, 2}; // OK
int[] y = new int[i] {0, 1, 2}; // Error, i not a constant
int[] z = new int[3] {0, 1, 2, 3}; // Error, length/initializer mismatch

Here, the initializer for y is in error because the dimension length expression is not a constant, and the initializer
for z is in error because the length and the number of elements in the initializer do not agree.

Chapter 13 Interfaces

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 219

13. Interfaces

13.1 Interface declarations
An interface-declaration is a type-declaration (§9.5) that declares a new interface type.

interface-declaration:
attributesopt interface-modifiersopt interface identifier interface-baseopt interface-body ;opt

An interface-declaration consists of an optional set of attributes (§17), followed by an optional set of interface-
modifiers (§13.1.1), followed by the keyword interface and an identifier that names the interface, optionally
followed by an optional interface-base specification (§13.1.2), followed by a interface-body (§13.1.3),
optionally followed by a semicolon.

13.1.1 Interface modifiers
An interface-declaration may optionally include a sequence of interface modifiers:

interface-modifiers:
interface-modifier
interface-modifiers interface-modifier

interface-modifier:
new
public
protected
internal
private

It is an error for the same modifier to appear multiple times in an interface declaration.

The new modifier is only permitted on nested interfaces. It specifies that the interface hides an inherited member
by the same name, as described in §10.2.2.

The public, protected, internal , and private modifiers control the accessibility of the interface.
Depending on the context in which the interface declaration occurs, only some of these modifiers may be
permitted (§3.3.1).

13.1.2 Base interfaces
An interface can inherit from zero or more interfaces, which are called the explicit base interfaces of the
interface. When an interface has more than zero explicit base interfaces then in the declaration of the interface,
the interface identifier is followed by a colon and a comma-separated list of base interface identifiers.

interface-base:
: interface-type-list

The explicit base interfaces of an interface must be at least as accessible as the interface itself (§3.3.4). For
example, it is an error to specify a private or internal interface in the interface-base of a public interface.

It is an error for an interface to directly or indirectly inherit from itself.

The base interfaces of an interface are the explicit base interfaces and their base interfaces. In other words, the
set of base interfaces is the complete transitive closure of the explicit base interfaces, their explicit base
interfaces, and so on. In the example

C# LANGUAGE REFERENCE

220 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

interface IControl
{

void Paint();
}

interface ITextBox: IControl
{

void SetText(string text);
}

interface IListBox: IControl
{

void SetItems(string[] items);
}

interface IComboBox: ITextBox, IListBox {}

the base interfaces of IComboBox are IControl, ITextBox, and IListBox.

An interface inherits all members of its base interfaces. In other words, the IComboBox interface above inherits
members SetText and SetItems as well as Paint.

A class or struct that implements an interface also implicitly implements all of the interface’s base interfaces.

13.1.3 Interface body
The interface-body of an interface defines the members of the interface.

interface-body:
{ interface-member-declarationsopt }

13.2 Interface members
The members of an interface are the members inherited from the base interfaces and the members declared by
the interface itself.

interface-member-declarations:
interface-member-declaration
interface-member-declarations interface-member-declaration

interface-member-declaration:
interface-method-declaration
interface-property-declaration
interface-event-declaration
interface-indexer-declaration

An interface declaration may declare zero or more members. The members of an interface must be methods,
properties, events, or indexers. An interface cannot contain constants, fields, operators, constructors, destructors,
static constructors, or types, nor can an interface contain static members of any kind.

All interface members implicitly have public access. It is an error for interface member declarations to include
any modifiers. In particular, interface members cannot be declared with the abstract, public, protected ,
internal, private , virtual, override , or static modifiers.

The example

public delegate void StringListEvent(IStringList sender);

public interface IStringList
{

void Add(string s);

int Count { get; }

Chapter 13 Interfaces

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 221

event StringListEvent Changed;

string this[int index] { get; set; }
}

declares an interface that contains one each of the possible kinds of members: A method, a property, an event,
and an indexer.

An interface-declaration creates a new declaration space (§3.1), and the interface-member-declarations
immediately contained by the interface-declaration introduce new members into this declaration space. The
following rules apply to interface-member-declarations:

• The name of a method must differ from the names of all properties and events declared in the same
interface. In addition, the signature (§3.4) of a method must differ from the signatures of all other methods
declared in the same interface.

• The name of a property or event must differ from the names of all other members declared in the same
interface.

• The signature of an indexer must differ from the signatures of all other indexers declared in the same
interface.

The inherited members of an interface are specifically not part of the declaration space of the interface. Thus, an
interface is allowed to declare a member with the same name or signature as an inherited member. When this
occurs, the derived interface member is said to hide the base interface member. Hiding an inherited member is
not considered an error, but it does cause the compiler to issue a warning. To suppress the warning, the
declaration of the derived interface member must include a new modifier to indicate that the derived member is
intended to hide the base member. This topic is discussed further in §3.5.1.2.

If a new modifier is included in a declaration that doesn’t hide an inherited member, a warning is issued to that
effect. This warning is suppressed by removing the new modifier.

13.2.1 Interface methods
Interface methods are declared using interface-method-declarations:

interface-method-declaration:
attributesopt newopt return-type identifier (formal-parameter-listopt) ;

The attributes, return-type, identifier, and formal-parameter-list of an interface method declaration have the
same meaning as those of a method declaration in a class (§10.5). An interface method declaration is not
permitted to specify a method body, and the declaration therefore always ends with a semicolon.

13.2.2 Interface properties
Interface properties are declared using interface-property-declarations:

interface-property-declaration:
attributesopt newopt type identifier { interface-accessors }

interface-accessors:
get ;
set ;
get ; set ;
set ; get ;

The attributes, type, and identifier of an interface property declaration have the same meaning as those of a
property declaration in a class (§10.6).

C# LANGUAGE REFERENCE

222 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The accessors of an interface property declaration correspond to the accessors of a class property declaration
(§10.6.2), except that no modifiers can be specified and the accessor body must always be a semicolon. Thus,
the accessors simply indicate whether the property is read-write, read-only, or write-only.

13.2.3 Interface events
Interface events are declared using interface-event-declarations:

interface-event-declaration:
attributesopt newopt event type identifier ;

The attributes, type, and identifier of an interface event declaration have the same meaning as those of an event
declaration in a class (§10.7).

13.2.4 Interface indexers
Interface indexers are declared using interface-indexer-declarations:

interface-indexer-declaration:
attributesopt newopt type this [formal-index-parameter-list] { interface-accessors }

The attributes, type, and formal-parameter-list of an interface indexer declaration have the same meaning as
those of an indexer declaration in a class (§10.8).

The accessors of an interface indexer declaration correspond to the accessors of a class indexer declaration
(§10.8), except that no modifiers can be specified and the accessor body must always be a semicolon. Thus, the
accessors simply indicate whether the indexer is read-write, read-only, or write-only.

13.2.5 Interface member access
Interface members are accessed through member access (§7.5.4) and indexer access (§7.5.6.2) expressions of
the form I.M and I[A], where I is an instance of an interface type, M is a method, property, or event of that
interface type, and A is an indexer argument list.

For interfaces that are strictly single-inheritance (each interface in the inheritance chain has exactly zero or one
direct base interface), the effects of the member lookup (§7.3), method invocation (§7.5.5.1), and indexer access
(§7.5.6.2) rules are exactly the same as for classes and structs: More derived members hide less derived
members with the same name or signature. However, for multiple-inheritance interfaces, ambiguities can occur
when two or more unrelated base interfaces declare members with the same name or signature. This section
shows several examples of such situations. In all cases, explicit casts can be included in the program code to
resolve the ambiguities.

In the example

interface IList
{

int Count { get; set; }
}

interface ICounter
{

void Count(int i);
}

interface IListCounter: IList, ICounter {}

Chapter 13 Interfaces

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 223

class C
{

void Test(IListCounter x) {
x.Count(1); // Error, Count is ambiguous
x.Count = 1; // Error, Count is ambiguous
((IList)x).Count = 1; // Ok, invokes IList.Count.set
((ICounter)x).Count(1); // Ok, invokes ICounter.Count

}
}

the first two statements cause compile-time errors because the member lookup (§7.3) of Count in
IListCounter is ambiguous. As illustrated by the example, the ambiguity is resolved by casting x to the
appropriate base interface type. Such casts have no run-time costs—they merely consist of viewing the instance
as a less derived type at compile-time.

In the example

interface IInteger
{

void Add(int i);
}

interface IDouble
{

void Add(double d);
}

interface INumber: IInteger, IDouble {}

class C
{

void Test(INumber n) {
n.Add(1); // Error, both Add methods are applicable
n.Add(1.0); // Ok, only IDouble.Add is applicable
((IInteger)n).Add(1); // Ok, only IInteger.Add is a candidate
((IDouble)n).Add(1); // Ok, only IDouble.Add is a candidate

}
}

the invocation n.Add(1) is ambiguous because a method invocation (§7.5.5.1) requires all overloaded
candidate methods to be declared in the same type. However, the invocation n.Add(1.0) is permitted because
only IDouble.Add is applicable. When explicit casts are inserted, there is only one candidate method, and thus
no ambiguity.

In the example

interface IBase
{

void F(int i);
}

interface ILeft: IBase
{

new void F(int i);
}

interface IRight: IBase
{

void G();
}

interface IDerived: ILeft, IRight {}

C# LANGUAGE REFERENCE

224 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

class A
{

void Test(IDerived d) {
d.F(1); // Invokes ILeft.F
((IBase)d).F(1); // Invokes IBase.F
((ILeft)d).F(1); // Invokes ILeft.F
((IRight)d).F(1); // Invokes IBase.F

}
}

the IBase.F member is hidden by the ILeft.F member. The invocation d.F(1) thus selects ILeft.F, even
though IBase.F appears to not be hidden in the access path that leads through IRight.

The intuitive rule for hiding in multiple-inheritance interfaces is simply this: If a member is hidden in any access
path, it is hidden in all access paths. Because the access path from IDerived to ILeft to IBase hides
IBase.F, the member is also hidden in the access path from IDerived to IRight to IBase.

13.3 Fully qualified interface member names
An interface member is sometimes referred to by its fully qualified name. The fully qualified name of an
interface member consists of the name of the interface in which the member is declared, followed by a dot,
followed by the name of the member. For example, given the declarations

interface IControl
{

void Paint();
}

interface ITextBox: IControl
{

void SetText(string text);
}

the fully qualified name of Paint is IControl.Paint and the fully qualified name of SetText is
ITextBox.SetText.

Note that the fully qualified name of a member references the interface in which the member is declared. Thus,
in the example above, it is not possible to refer to Paint as ITextBox.Paint.

When an interface is part of a namespace, the fully qualified name of an interface member includes the
namespace name. For example

namespace System
{

public interface ICloneable
{

object Clone();
}

}

Here, the fully qualified name of the Clone method is System.ICloneable.Clone.

13.4 Interface implementations
Interfaces may be implemented by classes and structs. To indicate that a class or struct implements an interface,
the interface identifier is included in the base class list of the class or struct.

interface ICloneable
{

object Clone();
}

Chapter 13 Interfaces

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 225

interface IComparable
{

int CompareTo(object other);
}

class ListEntry: ICloneable, IComparable
{

public object Clone() {...}

public int CompareTo(object other) {...}
}

A class or struct that implements an interface also implicitly implements all of the interface’s base interfaces.
This is true even if the class or struct doesn’t explicitly list all base interfaces in the base class list.

interface IControl
{

void Paint();
}

interface ITextBox: IControl
{

void SetText(string text);
}

class TextBox: ITextBox
{

public void Paint() {...}

public void SetText(string text) {...}
}

Here, class TextBox implements both IControl and ITextBox.

13.4.1 Explicit interface member implementations
For purposes of implementing interfaces, a class or struct may declare explicit interface member
implementations. An explicit interface member implementation is a method, property, event, or indexer
declaration that references a fully qualified interface member name. For example

interface ICloneable
{

object Clone();
}

interface IComparable
{

int CompareTo(object other);
}

class ListEntry: ICloneable, IComparable
{

object ICloneable.Clone() {...}

int IComparable.CompareTo(object other) {...}
}

Here, ICloneable.Clone and IComparable.CompareTo are explicit interface member implementations.

It is not possible to access an explicit interface member implementation through its fully qualified name in a
method invocation, property access, or indexer access. An explicit interface member implementation can only
be accessed through an interface instance, and is in that case referenced simply by its member name.

It is an error for an explicit interface member implementation to include access modifiers, as is it an error to
include the abstract, virtual, override , or static modifiers.

C# LANGUAGE REFERENCE

226 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Explicit interface member implementations have different accessibility characteristics than other members.
Because explicit interface member implementations are never accessible through their fully qualified name in a
method invocation or a property access, they are in a sense private. However, since they can be accessed
through an interface instance, they are in a sense also public.

Explicit interface member implementations serve two primary purposes:

• Because explicit interface member implementations are not accessible through class or struct instances, they
allow interface implementations to be excluded from the public interface of a class or struct. This is
particularly useful when a class or struct implements an internal interface that is of no interest to a consumer
of the class or struct.

• Explicit interface member implementations allow disambiguation of interface members with the same
signature. Without explicit interface member implementations it would be impossible for a class or struct to
have different implementations of interface members with the same signature and return type, as would it be
impossible for a class or struct to have any implementation at all of interface members with the same
signature but with different return types.

For an explicit interface member implementation to be valid, the class or struct must name an interface in its
base class list that contains a member whose fully qualified name, type, and parameter types exactly match those
of the explicit interface member implementation. Thus, in the following class

class Shape: ICloneable
{

object ICloneable.Clone() {...}

int IComparable.CompareTo(object other) {...}
}

the declaration of IComparable.CompareTo is invalid because IComparable is not listed in the base class
list of Shape and is not a base interface of ICloneable. Likewise, in the declarations

class Shape: ICloneable
{

object ICloneable.Clone() {...}
}

class Ellipse: Shape
{

object ICloneable.Clone() {...}
}

the declaration of ICloneable.Clone in Ellipse is in error because ICloneable is not explicitly listed in
the base class list of Ellipse.

The fully qualified name of an interface member must reference the interface in which the member was
declared. Thus, in the declarations

interface IControl
{

void Paint();
}

interface ITextBox: IControl
{

void SetText(string text);
}

class TextBox: ITextBox
{

void IControl.Paint() {...}

void ITextBox.SetText(string text) {...}
}

Chapter 13 Interfaces

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 227

the explicit interface member implementation of Paint must be written as IControl.Paint.

13.4.2 Interface mapping
A class or struct must provide implementations of all members of the interfaces that are listed in the base class
list of the class or struct. The process of locating implementations of interface members in an implementing
class or struct is known as interface mapping.

Interface mapping for a class or struct C locates an implementation for each member of each interface specified
in the base class list of C. The implementation of a particular interface member I.M, where I is the interface in
which the member M is declared, is determined by examining each class or struct S, starting with C and repeating
for each successive base class of C, until a match is located:

• If S contains a declaration of an explicit interface member implementation that matches I and M, then this
member is the implementation of I.M.

• Otherwise, if S contains a declaration of a non-static public member that matches M, then this member is the
implementation of I.M.

An error occurs if implementations cannot be located for all members of all interfaces specified in the base class
list of C. Note that the members of an interface include those members that are inherited from base interfaces.

For purposes of interface mapping, a class member A matches an interface member B when:

• A and B are methods, and the name, type, and formal parameter lists of A and B are identical.

• A and B are properties, the name and type of A and B are identical, and A has the same accessors as B (A is
permitted to have additional accessors if it is not an explicit interface member implementation).

• A and B are events, and the name and type of A and B are identical.

• A and B are indexers, the type and formal parameter lists of A and B are identical, and A has the same
accessors as B (A is permitted to have additional accessors if it is not an explicit interface member
implementation).

Notable implications of the interface mapping algorithm are:

• Explicit interface member implementations take precedence over other members in the same class or struct
when determining the class or struct member that implements an interface member.

• Private, protected, and static members do not participate in interface mapping.

In the example

interface ICloneable
{

object Clone();
}

class C: ICloneable
{

object ICloneable.Clone() {...}

public object Clone() {}
}

the ICloneable.Clone member of C becomes the implementation of Clone in ICloneable because explicit
interface member implementations take precedence over other members.

If a class or struct implements two or more interfaces containing a member with the same name, type, and
parameter types, it is possible to map each of those interface members onto a single class or struct member. For
example

C# LANGUAGE REFERENCE

228 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

interface IControl
{

void Paint();
}

interface IForm
{

void Paint();
}

class Page: IControl, IForm
{

public void Paint() {...}
}

Here, the Paint methods of both IControl and IForm are mapped onto the Paint method in Page. It is of
course also possible to have separate explicit interface member implementations for the two methods.

If a class or struct implements an interface that contains hidden members, then some members must necessarily
be implemented through explicit interface member implementations. For example

interface IBase
{

int P { get; }
}

interface IDerived: IBase
{

new int P();
}

An implementation of this interface would require at least one explicit interface member implementation, and
would take one of the following forms

class C: IDerived
{

int IBase.P { get {...} }

int IDerived.P() {...}
}

class C: IDerived
{

public int P { get {...} }

int IDerived.P() {...}
}

class C: IDerived
{

int IBase.P { get {...} }

public int P() {...}
}

When a class implements multiple interfaces that have the same base interface, there can be only one
implementation of the base interface. In the example

interface IControl
{

void Paint();
}

interface ITextBox: IControl
{

void SetText(string text);
}

Chapter 13 Interfaces

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 229

interface IListBox: IControl
{

void SetItems(string[] items);
}

class ComboBox: IControl, ITextBox, IListBox
{

void IControl.Paint() {...}

void ITextBox.SetText(string text) {...}

void IListBox.SetItems(string[] items) {...}
}

it is not possible to have separate implementations for the IControl named in the base class list, the IControl
inherited by ITextBox , and the IControl inherited by IListBox. Indeed, there is no notion of a separate
identity for these interfaces. Rather, the implementations of ITextBox and IListBox share the same
implementation of IControl , and ComboBox is simply considered to implement three interfaces, IControl,
ITextBox, and IListBox.

The members of a base class participate in interface mapping. In the example

interface Interface1
{

void F();
}

class Class1
{

public void F() {}

public void G() {}
}

class Class2: Class1, Interface1
{

new public void G() {}
}

the method F in Class1 is used in Class2's implementation of Interface1.

13.4.3 Interface implementation inheritance
A class inherits all interface implementations provided by its base classes.

Without explicitly re-implementing an interface, a derived class cannot in any way alter the interface mappings
it inherits from its base classes. For example, in the declarations

interface IControl
{

void Paint();
}

class Control: IControl
{

public void Paint() {...}
}

class TextBox: Control
{

new public void Paint() {...}
}

the Paint method in TextBox hides the Paint method in Control , but it does not alter the mapping of
Control.Paint onto IControl.Paint , and calls to Paint through class instances and interface instances
will have the following effects

C# LANGUAGE REFERENCE

230 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Control c = new Control();
TextBox t = new TextBox();
IControl ic = c;
IControl it = t;
c.Paint(); // invokes Control.Paint();
t.Paint(); // invokes TextBox.Paint();
ic.Paint(); // invokes Control.Paint();
it.Paint(); // invokes Control.Paint();

However, when an interface method is mapped onto a virtual method in a class, it is possible for derived classes
to override the virtual method and alter the implementation of the interface. For example, rewriting the
declarations above to

interface IControl
{

void Paint();
}

class Control: IControl
{

public virtual void Paint() {...}
}

class TextBox: Control
{

public override void Paint() {...}
}

the following effects will now be observed

Control c = new Control();
TextBox t = new TextBox();
IControl ic = c;
IControl it = t;
c.Paint(); // invokes Control.Paint();
t.Paint(); // invokes TextBox.Paint();
ic.Paint(); // invokes Control.Paint();
it.Paint(); // invokes TextBox.Paint();

Since explicit interface member implementations cannot be declared virtual, it is not possible to override an
explicit interface member implementation. It is however perfectly valid for an explicit interface member
implementation to call another method, and that other method can be declared virtual to allow derived classes to
override it. For example

interface IControl
{

void Paint();
}

class Control: IControl
{

void IControl.Paint() { PaintControl(); }

protected virtual void PaintControl() {...}
}

class TextBox: Control
{

protected override void PaintControl() {...}
}

Here, classes derived from Control can specialize the implementation of IControl.Paint by overriding the
PaintControl method.

Chapter 13 Interfaces

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 231

13.4.4 Interface re-implementation
A class that inherits an interface implementation is permitted to re-implement the interface by including it in the
base class list.

A re-implementation of an interface follows exactly the same interface mapping rules as an initial
implementation of an interface. Thus, the inherited interface mapping has no effect whatsoever on the interface
mapping established for the re-implementation of the interface. For example, in the declarations

interface IControl
{

void Paint();
}

class Control: IControl
{

void IControl.Paint() {...}
}

class MyControl: Control, IControl
{

public void Paint() {}
}

the fact that Control maps IControl.Paint onto Control.IControl.Paint doesn’t affect the re-
implementation in MyControl , which maps IControl.Paint onto MyControl.Paint.

Inherited public member declarations and inherited explicit interface member declarations participate in the
interface mapping process for re-implemented interfaces. For example

interface IMethods
{

void F();
void G();
void H();
void I();

}

class Base: IMethods
{

void IMethods.F() {}
void IMethods.G() {}
public void H() {}
public void I() {}

}

class Derived: Base, IMethods
{

public void F() {}
void IMethods.H() {}

}

Here, the implementation of IMethods in Derived maps the interface methods onto Derived.F,
Base.IMethods.G, Derived.IMethods.H, and Base.I.

When a class implements an interface, it implicitly also implements all of the interface’s base interfaces.
Likewise, a re-implementation of an interface is also implicitly a re-implementation of all of the interface’s base
interfaces. For example

interface IBase
{

void F();
}

C# LANGUAGE REFERENCE

232 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

interface IDerived: IBase
{

void G();
}

class C: IDerived
{

void IBase.F() {...}

void IDerived.G() {...}
}

class D: C, IDerived
{

public void F() {...}

public void G() {...}
}

Here, the re-implementation of IDerived also re-implements IBase, mapping IBase.F onto D.F.

13.4.5 Abstract classes and interfaces
Like a non-abstract class, an abstract class must provide implementations of all members of the interfaces that
are listed in the base class list of the class. However, an abstract class is permitted to map interface methods onto
abstract methods. For example

interface IMethods
{

void F();
void G();

}

abstract class C: IMethods
{

public abstract void F();
public abstract void G();

}

Here, the implementation of IMethods maps F and G onto abstract methods, which must be overridden in non-
abstract classes that derive from C.

Note that explicit interface member implementations cannot be abstract, but explicit interface member
implementations are of course permitted to call abstract methods. For example

interface IMethods
{

void F();
void G();

}

abstract class C: IMethods
{

void IExample.F() { FF(); }

void IExample.G() { GG(); }

protected abstract void FF();

protected abstract void GG();
}

Here, non-abstract classes that derive from C would be required to override FF and GG, thus providing the actual
implementation of IMethods.

Chapter 14 Enums

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 233

14. Enums

An enum type is a distinct type with named constants. Enum declarations may appear in the same places that
class declarations can occur.

The example

using System;

enum Color
{

Red,
Green,
Blue

}

declares an enum type named Color with members Red, Green, and Blue.

14.1 Enum declarations
An enum declaration declares a new enum type. An enum declaration begins with the keyword enum, and
defines the name, accessibility, underlying type, and members of the enum.

enum-declaration:
attributesopt enum-modifiersopt enum identifier enum-baseopt enum-body ;opt

enum-modifiers:
enum-modifier
enum-modifiers enum-modifier

enum-modifier:
new
public
protected
internal
private

enum-base:
: integral-type

enum-body:
{ enum-member-declarationsopt }
{ enum-member-declarations , }

Each enum type has a corresponding integral type called the underlying type of the enum type. This underlying
type can represent all the enumerator values defined in the enumeration. An enum declaration may explicitly
declare an underlying type of byte, sbyte, short, ushort , int, uint, long or ulong. Note that char
cannot be used as an underlying type. An enum declaration that does not explicitly declare an underlying type
has an underlying type of int.

The example

enum Color: long
{

Red,
Green,
Blue

}

C# LANGUAGE REFERENCE

234 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

declares an enum with an underlying type of long. A developer might choose to use an underlying type of
long, as in the example, to enable the use of values that are in the range of long but not in the range of int, or
to preserve this option for the future.

14.2 Enum members
The body of an enum type declaration defines zero or more enum members, which are the named constants of
the enum type. No two enum members can have the same name. An enum declaration can not contain
declarations of methods, properties, events, operators, or types.

enum-member-declarations:
enum-member-declaration
enum-member-declarations , enum-member-declaration

enum-member-declaration:
attributesopt identifier
attributesopt identifier = constant-expression

Each enum member has an associated constant value. The type of this value is the underlying type for the
containing enum. The constant value for each enum member must be in the range of the underlying type for the
enum. The example

enum Color: uint
{

Red = -1
Green = -2,
Blue = -3

}

is in error because the constant values -1, -2, and –3 are not in the range of the underlying integral type uint.

Multiple enum members may share the same associated value. The example

enum Color
{

Red,
Green,
Blue,

Max = Blue,
}

shows an enum that has two enum members – Blue and Max – that have the same associated value.

The associated value of an enum member is assigned either implicitly or explicitly. If the declaration of the
enum member has a constant-expression initializer, the value of that constant expression, implicitly converted to
the underlying type of the enum, is the associated value of the enum member. If the declaration of the enum
member has no initializer, its associated value is set implicitly, as follows:

• If the enum member is the first enum member declared in the enum type, its associated value is zero.

• Otherwise, the associated value of the enum member is obtained by increasing the associated value of the
previous enum member by one. This increased value must be within the range of values that can be
represented by the underlying type.

The example

using System;

Chapter 14 Enums

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 235

enum Color
{

Red,
Green = 10,
Blue

}

class Test
{

static void Main() {
Console.WriteLine(StringFromColor(Color.Red));
Console.WriteLine(StringFromColor(Color.Green));
Console.WriteLine(StringFromColor(Color.Blue));

}

static string StringFromColor(Color c) {
switch (c) {

case Color.Red:
return String.Format("Red = {0}", (int) c);

case Color.Green:
return String.Format("Green = {0}", (int) c);

case Color.Blue:
return String.Format("Blue = {0}", (int) c);

default:
return "Invalid color";

}
}

}

prints out the enum member names and their associated values. The output is:

Red = 0
Blue = 10
Green = 11

for the following reasons:

• the enum member Red is automatically assigned the value zero (since it has no initializer and is the first
enum member);

• the enum member Blue is explicitly given the value 10;

• and the enum member Green is automatically assigned the value one greater than the member that textually
precedes it.

The associated value of an enum member may not, directly or indirectly, use the value of its own associated
enum member. Other than this circularity restriction, enum member initializers may freely refer to other enum
member initializers, regardless of their textual position. Within an enum member initializer, values of other
enum members are always treated as having the type of their underlying type, so that casts are not necessary
when referring to other enum members.

The example

enum Circular
{

A = B
B

}

is invalid because the declarations of A and B are circular. A depends on B explicitly, and B depends on A
implicitly.

C# LANGUAGE REFERENCE

236 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Enum members are named and scoped in a manner exactly analogous to fields within classes. The scope of an
enum member is the body of its containing enum type. Within that scope, enum members can be referred to by
their simple name. From all other code, the name of an enum member must be qualified with the name of its
enum type. Enum members do not have any declared accessibility—an enum member is accessible if its
containing enum type is accessible.

14.3 Enum values and operations
Each enum type defines a distinct type; an explicit enumeration conversion (§6.2.2) is required to convert
between an enum type and an integral type, or between two enum types. The set of values that an enum type can
take on is not limited by its enum members. In particular, any value of the underlying type of an enum can be
cast to the enum type, and is a distinct valid value of that enum type.

Enum members have the type of their containing enum type (except within other enum member initializers: see
§14.2). The value of an enum member declared in enum type E with associated value v is (E)v.

The following operators can be used on values of enum types: == , !=, < , >, <=, >= (§7.9.5), + (§7.7.4),
- (§7.7.5), ^, &, | (§7.10.2), ~ (§7.6.4), ++, -- (§7.5.9, §7.6.7), sizeof (§7.5.12).

Every enum type automatically derives from the class System.Enum. Thus, inherited methods and properties of
this class can be used on values of an enum type.

Chapter 15 Delegates

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 237

15. Delegates

15.1 Delegate declarations
delegate-declaration:

attributesopt delegate-modifiersopt delegate result-type identifier (formal-parameter-listopt

) ;

15.1.1 Delegate modifiers
delegate-modifiers:

delegate-modifier
delegate-modifiers delegate-modifier

delegate-modifier:
new
public
protected
internal
private

Chapter 16 Exceptions

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 239

16. Exceptions

Chapter 17 Attributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 241

17. Attributes

Much of the C# language enables the programmer to specify declarative information about the entities defined
in the program. For example, the accessibility of a method in a class is specified by decorating it with the
method-modifiers public, protected, internal, and private.

C# enables programmers to invent new kinds of declarative information, to specify declarative information for
various program entities, and to retrieve attribute information in a run-time environment. For instance, a
framework might define a HelpAttribute attribute that can be placed on program elements such as classes
and methods to provide a mapping from program elements to documentation for them.

New kinds of declarative information are defined through the declaration of attribute classes (§17.1), which may
have positional and named parameters (§17.1.2). Declarative information is specified a C# program using
attributes (§17.2), and can be retrieved at run-time as attribute instances (§17.3).

17.1 Attribute classes
The declaration of an attribute class defines a new kind of attribute that can be placed on a declaration. A class
that derives from the abstract class System.Attribute, whether directly or indirectly, is an attribute class.

A declaration of an attribute class is subject to the following additional restrictions:

• A non-abstract attribute class must have public accessibility.

• All of the types in which a non-abstract attribute class is nested must have public accessibility.

• A non-abstract attribute class must have at least one public constructor.

• Each of the formal parameter types for each of the public constructors of an attribute class must be an
attribute parameter type (§17.1.3).

By convention, attribute classes are named with a suffix of Attribute. Uses of an attribute may either include
or omit this suffix.

17.1.1 The AttributeUsage attribute
The AttributeUsage attribute is used to describe how an attribute class can be used.

The AttributeUsage attribute has a positional parameter named that enables an attribute class to specify the
kinds of declarations on which it can be used. The example

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Interface)]
public class SimpleAttribute: System.Attribute
{}

defines an attribute class named SimpleAttribute that can be placed on class-declarations and interface-
declarations. The example

[Simple] class Class1 {…}

[Simple] interface Interface1 {…}

shows several uses of the Simple attribute. The attribute is defined with a class named SimpleAttribute, but
uses of this attribute may omit the Attribute suffix, thus shortening the name to Simple. The example above
is semantically equivalent to the example

[SimpleAttribute] class Class1 {…}

[SimpleAttribute] interface Interface1 {…}

C# LANGUAGE REFERENCE

242 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The AttributeUsage attribute has an AllowMultiple named parameter that specifies whether the indicated
attribute can be specified more than once for a given entity. An attribute that can be specified more than once on
an entity is called a multi-use attribute class. An attribute that can be specified at most once on an entity is
called a single-use attribute class.

The example

[AttributeUsage(AttributeTargets.Class, AllowMultiple = true)]
public class AuthorAttribute: System.Attribute {

public AuthorAttribute(string value);

public string Value { get {…} }
}

defines a multi-use attribute class named AuthorAttribute. The example

[Author("Brian Kernighan"), Author("Dennis Ritchie")]
class Class1 {…}

shows a class declaration with two uses of the Author attribute.

17.1.2 Positional and named parameters
Attribute classes can have positional parameters and named parameters. Each public constructor for an attribute
class defines a valid sequence of positional parameters for the attribute class. Each non-static public read-write
field and property for an attribute class defines a named parameter for the attribute class.

The example

[AttributeUsage(AttributeTargets.Class]
public class HelpAttribute: System.Attribute
{

public HelpAttribute(string url) { // url is a positional parameter
…

}

public string Topic { // Topic is a named parameter
get {...}
set {...}

}

public string Url { get {…} }
}

defines an attribute class named HelpAttribute that has one positional parameter (string url) and one
named argument (string Topic). The read-only Url property does not define a named parameter. It is non-
static and public, but since it is read-only it does not define a named parameter.

The example

[HelpAttribute("http://www.mycompany.com/…/Class1.htm")]
class Class1 {
}

[HelpAttribute("http://www.mycompany.com/…/Misc.htm", Topic ="Class2")]
class Class2 {
}

shows several uses of the attribute.

17.1.3 Attribute parameter types
The types of positional and named parameters for an attribute class are limited to the attribute parameter types.
A type is an attribute type if it is one of the following:

Chapter 17 Attributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 243

• One of the following types: bool , byte, char , double, float , int, long , short, string.

• The type object.

• The type System.Type.

• An enum type provided that it has public accessibility and that the types in which it is nested (if any) also
have public accessibility.

An attribute class that defines a positional or named parameter whose type is not an attribute parameter type is
in error. The example

public class InvalidAttribute: System.Attribute
{

public InvalidAttribute(Class1 c) {…} // error
}

public class Class1 {
...

}

is in error because it defines an attribute class with a positional parameter of type Class1, which is not an
attribute parameter type.

17.2 Attribute specification
An attribute is a piece of additional declarative information that is specified for a declaration. Attributes can be
specified for type-declarations, class-member-declarations, interface-member-declarations, enum-member-
declarations, property-accessor-declarations and formal-parameter declarations.

Attributes are specified in attribute sections. Each attribute section is surrounded in square brackets, with
multiple attributes specified in a comma-separated lists. The order in which attributes are specified, and the
manner in which they are arranged in sections is not significant. The attribute specifications [A][B], [B][A] ,
[A, B], and [B, A] are equivalent.

attributes:
attribute-sections

attribute-sections:
attribute-section
attribute-sections attribute-section

attribute-section:
[attribute-list]
[attribute-list ,]

attribute-list:
attribute
attribute-list , attribute

attribute:
attribute-name attribute-argumentsopt

attribute-name:
reserved-attribute-name
type-name

attribute-arguments:
(positional-argument-list)
(positional-argument-list , named-argument-list)
(named-argument-list)

C# LANGUAGE REFERENCE

244 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

positional-argument-list:
positional-argument
positional-argument-list , positional-argument

positional-argument:
attribute-argument-expression

named-argument-list:
named-argument
named-argument-list , named-argument

named-argument:
identifier = attribute-argument-expression

attribute-argument-expression:
expression

An attribute consists of an attribute-name and an optional list of positional and named arguments. The positional
arguments (if any) precede the named arguments. A positional argument consists of an attribute-argument-
expression; a named argument consists of a name, followed by an equal sign, followed by an attribute-
argument-expression.

The attribute-name identifies either a reserved attribute or an attribute class. If the form of attribute-name is
type-name then this name must refer to an attribute class. Otherwise, a compile-time error occurs. The example

class Class1 {}

[Class1] class Class2 {} // Error

is in error because it attempts to use Class1, which is not an attribute class, as an attribute class.

It is an error to use a single-use attribute class more than once on the same entity. The example

[AttributeUsage(AttributeTargets.Class)]
public class HelpStringAttribute: System.Attribute
{

string value;

public HelpStringAttribute(string value) {
this.value = value;

}

public string Value { get {…} }
}

[HelpString("Description of Class1")]
[HelpString("Another description of Class1")]
public class Class1 {}

is in error because it attempts to use HelpString, which is a single-use attribute class, more than once on the
declaration of Class1.

An expression E is an attribute-argument-expression if all of the following statements are true:

• The type of E is an attribute parameter type (§17.1.3).

• At compile-time, the value of E can be resolved to one of the following:

• A constant value.

• A System.Type object.

• A one-dimensional array of attribute-argument-expressions.

Chapter 17 Attributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 245

17.3 Attribute instances
An attribute instance is an instance that represents an attribute at run-time. An attribute is defined with an
attribute, positional arguments, and named arguments. An attribute instance is an instance of the attribute class
that is initialized with the positional and named arguments.

Retrieval of an attribute instance involves both compile-time and run-time processing, as described in the
following sections.

17.3.1 Compilation of an attribute
The compilation of an attribute with attribute class T, positional-argument-list P and named-argument-list N,
consists of the following steps:

• Follow the compile-time processing steps for compiling an object-creation-expression of the form new
T(P). These steps either result in a compile-time error, or determine a constructor on T that can be invoked
at run-time. Call this constructor C.

• If the constructor determined in the step above does not have public accessibility, then a compile-time error
occurs.

• For each named-argument Arg in N:

• Let Name be the identifier of the named-argument Arg.

• Name must identify a non-static read-write public field or property on T. If T has no such field or
property, then a compile-time error occurs.

• Keep the following information for run-time instantiation of the attribute instance: the attribute class T, the
constructor C on T, the positional-argument-list P and the named-argument-list N.

17.3.2 Run-time retrieval of an attribute instance
Compilation of an attribute yields an attribute class T, constructor C on T, positional-argument-list P and
named-argument-list N. Given this information, an attribute instance can be retrieved at run-time using the
following steps:

• Follow the run-time processing steps for executing an object-creation-expression of the form T(P), using
the constructor C as determined at compile-time. These steps either result in an exception, or produce an
instance of T. Call this instance O.

• For each named-argument Arg in N, in order:

• Let Name be the identifier of the named-argument Arg. If Name does not identify a non-static public
read-write field or property on O , then an exception (TODO: which exception?) is thrown.

• Let Value be the result of evaluating the attribute-argument-expression of Arg.

• If Name identifies a field on O, then set this field to the value Value.

• Otherwise, Name identifies a property on O. Set this property to the value Value.

• The result is O, an instance of the attribute class T that has been initialized with the positional-argument-
list P and the named-argument-list N.

17.4 Reserved attributes
A small number of attributes affect the language in some way. These attributes include:

C# LANGUAGE REFERENCE

246 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• System.AttributeUsageAttribute , which is used to describe the ways in which an attribute class can
be used.

• System.ConditionalAttribute , which is used to define conditional methods.

• System.ObsoleteAttribute , which is used to mark a member as obsolete.

17.4.1 The AttributeUsage attribute
The AttributeUsage attribute is used to describe the manner in which the attribute class can be used.

A class that is decorated with the AttributeUsage attribute must derive from System.Attribute, either
directly or indirectly. Otherwise, a compile-time error occurs.

[AttributeUsage(AttributeTargets.Class)]
public class AttributeUsageAttribute: System.Attribute
{

public AttributeUsageAttribute(AttributeTargets validOn) {…}

public AttributeUsageAttribute(AttributeTargets validOn,
bool allowMultiple,
bool inherited) {…}

public bool AllowMultiple { virtual get {…} virtual set {…} }

public bool Inherited { virtual get {…} virtual set {…} }

public AttributeTargets ValidOn { virtual get {…} }
}

public enum AttributeTargets
{

Assembly = 0x0001,
Module = 0x0002,
Class = 0x0004,
Struct = 0x0008,
Enum = 0x0010,
Constructor = 0x0020,
Method = 0x0040,
Property = 0x0080,
Field = 0x0100,
Event = 0x0200,
Interface = 0x0400,
Parameter = 0x0800,
Delegate = 0x1000,

All = Assembly | Module | Class | Struct | Enum | Constructor |
Method | Property | Field | Event | Interface | Parameter |
Delegate,

ClassMembers = Class | Struct | Enum | Constructor | Method |
Property | Field | Event | Delegate | Interface,

}

17.4.2 The Conditional attribute
The Conditional attribute enables the definition of conditional methods. The Conditional attribute
indicates a condition in the form of a pre-processing identifier. Calls to a conditional method are either included
or omitted depending on whether this symbol is defined at the point of the call. If the symbol is defined, then the
method call is included if the symbol is undefined, then the call is omitted.

[AttributeUsage(AttributeTargets.Method, AllowMultiple = true)]
public class ConditionalAttribute: System.Attribute
{

public ConditionalAttribute(string conditionalSymbol) {…}

Chapter 17 Attributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 247

public string ConditionalSymbol { get {…} }
}

A conditional method is subject to the following restrictions:

• The conditional method must be a method in a class-declaration. A compile-time error occurs if the
Conditional attribute is specified on an interface method.

• The conditional method must return have a return type of void.

• The conditional method must not be marked with the override modifier. A conditional method may be
marked with the virtual modifier. Overrides of such a method are implicitly conditional, and must not be
explicitly marked with a Conditional attribute.

• The conditional method must not be an implementation of an interface method. Otherwise, a compile-time
error occurs.

Also, a compile-time error occurs if a conditional method is used in a delegate-creation-expression. The
example

#define DEBUG

class Class1
{

[Conditional("DEBUG")]
public static void M() {

Console.WriteLine("Executed Class1.M");
}

}

class Class2
{

public static void Test() {
Class1.M();

}
}

declares Class1.M as a conditional method. Class2's Test method calls this method. Since the pre-processing
symbol DEBUG is defined, if Class2.Test is called, it will call M. If the symbol DEBUG had not been defined,
then Class2.Test would not call Class1.M.

It is important to note that the inclusion or exclusion of a call to a conditional method is controlled by the pre-
processing identifiers at the point of the call. In the example

// Begin class1.cs

class Class1
{

[Conditional("DEBUG")]
public static void F() {

Console.WriteLine("Executed Class1.F");
}

}

// End class1.cs

// Begin class2.cs

#define DEBUG

C# LANGUAGE REFERENCE

248 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

class Class2
{

public static void G {
Class1.F(); // F is called

}
}

// End class2.cs

// Begin class3.cs

#undef DEBUG

class Class3
{

public static void H {
Class1.F(); // F is not called

}
}

// End class3.cs

the classes Class2 and Class3 each contain calls to the conditional method Class1.F , which is conditional
based on the presence or absence of DEBUG. Since this symbol is defined in the context of Class2 but not
Class3, the call to F in Class2 is actually made, while the call to F in Class3 is omitted.

The use of conditional methods in an inheritance chain can be confusing. Calls made to a conditional method
through base, of the form base.M, are subject to the normal conditional method call rules. In the example

class Class1
{

[Conditional("DEBUG")]
public virtual void M() {

Console.WriteLine("Class1.M executed");
}

}

class Class2: Class1
{

public override void M() {
Console.WriteLine("Class2.M executed");
base.M(); // base.M is not called!

}
}

#define DEBUG

class Class3
{

public static void Test() {
Class2 c = new Class2();
c.M(); // M is called

}
}

Class2 includes a call the M defined in its base class. This call is omitted because the base method is
conditional based on the presence of the symbol DEBUG , which is undefined. Thus, the method writes to the
console only "Class2.M executed". Judicious use of pp-declarations can eliminate such problems.

17.4.3 The Obsolete attribute
The Obsolete attribute is used to mark program elements that should no longer be used.

Chapter 17 Attributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 249

[AttributeUsage(AttributeTargets.All)]
public class ObsoleteAttribute: System.Attribute
{

public ObsoleteAttribute(string message) {…}

public string Message { get {…} }

public bool IsError{ get {…} set {…} }
}

Chapter 18 Versioning

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 251

18. Versioning

Chapter 19 Unsafe code

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 253

19. Unsafe code

19.1 Unsafe code

19.2 Pointer types
pointer-type:

unmanaged-type *
void *

unmanaged-type:
value-type

Chapter 20 Interoperability

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 255

20. Interoperability

20.1 Attributes
The attributes described in this chapter are used for creating .NET programs that interoperate with COM
programs.

20.1.1 The COMImport attribute
When placed on a class, the COMImport attribute marks the class as an externally implemented COM class.
Such a class declaration enables the use of a C# name to refer to a COM class.

[AttributeUsage(AttributeTargets.Class)]
public class COMImportAttribute: System.Attribute
{

public COMImportAttribute() {…}
}

A class that is decorated with the COMImport attribute is subject to the following restrictions:

• It must also be decorated with the Guid attribute, which specifies the CLSID for the COM class being
imported. A compile-time error occurs if a class declaration includes the COMImport attribute but fails to
include the Guid attribute.

• It must not have any members. (A public constructor with no parameters is automatically provided.)

• It must not derive from a class other than object.

The example

[COMImport, Guid("00020810-0000-0000-C000-000000000046")]
class Worksheet {}

class Test
{

static void Main() {
Worksheet w = new Worksheet(); // Creates an Excel worksheet

}
}

declares a class Worksheet as a class imported from COM that has a CLSID of "00020810-0000-0000-
C000-000000000046". Instantiating a Worksheet instance causes a corresponding COM instantiation.

20.1.2 The COMSourceInterfaces attribute
The COMSourceInterfaces attribute is used to list the source interfaces on the imported coclass.

[AttributeUsage(AttributeTargets.Class)]
public class ComSourceInterfacesAttribute: System.Attribute
{

public ComSourceInterfacesAttribute(string value) {…}

public string Value { get {…} }
}

20.1.3 The COMVisibility attribute
The COMVisibility attribute is used to specify whether or not a class or interface is visible in COM.

C# LANGUAGE REFERENCE

256 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Interface)]
public class COMVisibilityAttribute: System.Attribute
{

public COMVisibilityAttribute(System.Interop.ComVisibility value) {…}

public ComVisibilityAttribute Value { get {…} }
}

20.1.4 The DispId attribute
The DispId attribute is used to specify an OLE Automation DISPID. (A DISPID is an integral value that
identifies a member in a dispinterface.)

[AttributeUsage(AttributeTargets.Method | AttributeTargets.Field |
AttributeTargets.Property)]
public class DispIdAttribute: System.Attribute
{

public DispIdAttribute(int value) {…}

public int Value { get {…} }
}

20.1.5 The DllImport attribute
The DllImport attribute is used to specify the dll location that contains the implementation of an extern
method.

[AttributeUsage(AttributeTargets.Method)]
public class DllImportAttribute: System.Attribute
{

public DllImportAttribute(string dllName) {…}

public CallingConvention CallingConvention;

public CharSet CharSet;

public string DllName { get {…} }

public string EntryPoint;

public bool ExactSpelling;

public bool SetLastError;

}

Specifically, the DllImport attribute has the following behaviors:

• It can only be placed on method declarations.

• It has a single positional parameter: a dllName parameter that specifies name of the dll in which the
imported method can be found.

• It has four named parameters:

• The CallingConvention parameter indicates the calling convention for the entry point. If no
CallingConvention is specified, a default of CallingConvention.WinAPI is used.

• The CharSet parameter indicates the character set used in the entry point. If no CharSet is specified, a
default of CharSet.Auto is used.

• The EntryPoint parameter gives the name of the entry point in the dll. If no EntryPoint is
specified, then the name of the method itself is used.

• The ExactSpelling parameter indicates whether EntryPoint must exactly match the spelling of the
indicated entry point. If no ExactSpelling is specified, a default of false is used.

Chapter 20 Interoperability

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 257

• The SetLastError parameter indicates whether the method preserves the Win32 "last error". If no
SetLastError is specified, a default of false is used.

• It is a single-use attribute class.

In addition, a method that is decorated with the DllImport attribute must have the extern modifier.

20.1.6 The GlobalObject attribute
The presence of the GlobalObject attribute specifies that a class is a "global" or "appobject" class in COM.

[AttributeUsage(AttributeTargets.Class)]
public class GlobalObjectAttribute: System.Attribute
{

public GlobalObjectAttribute() {…}
}

20.1.7 The Guid attribute
The Guid attribute is used to specify a globally unique identifier (GUID) for a class or an interface. This
information is primarily useful for interoperability between the .NET runtime and COM.

[AttributeUsage(AttributeTargets.Class
| AttributeTargets.Interface
| AttributeTargets.Enum
| AttributeTargets.Delegate
| AttributeTargets.Struct)]

public class GuidAttribute: System.Attribute
{

public GuidAttribute(string uuid) {…}

public Guid Value { get {…} }
}

The format of the positional string argument is verified at compile-time. It is an error to specify a string
argument that is not a syntactically valid GUID.

20.1.8 The HasDefaultInterface attribute
If present, the HasDefaultInterface attribute indicates that a class has a default interface.

[AttributeUsage(AttributeTargets.Class)]
public class HasDefaultInterfaceAttribute: System.Attribute
{

public HasDefaultInterfaceAttribute() {…}
}

20.1.9 The ImportedFromCOM attribute
The ImportedFromCOM attribute is used to specify that a module was imported from a COM type library.

[AttributeUsage(AttributeTargets.Module)]
public class ImportedFromCOMAttribute: System.Attribute
{

public ImportedFromCOMAttribute(string value) {…}

public string Value { get {..} }

}

20.1.10 The In and Out attributes
The In and Out attributes are used to provide custom marshalling information for parameters. All combinations
of these marshalling attributes are permitted.

C# LANGUAGE REFERENCE

258 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

[AttributeUsage(AttributeTargets.Parameter)]
public class InAttribute: System.Attribute
{

public InAttribute() {…}
}

[AttributeUsage(AttributeTargets.Parameter)]
public class OutAttribute: System.Attribute
{

public OutAttribute() {…}
}

If a parameter is not decorated with either marshalling attribute, then it is marshalled based on the its parameter-
modifiers, as follows. If the parameter has no modifiers then the marshalling is [In]. If the parameter has the
ref modifier then the marshalling is [In, Out]. If the parameter has the out modifier then the marshalling is
[Out].

Note that out is a keyword, and Out is an attribute. The example

class Class1
{

void M([Out] out int i) {
…

}
}

shows that the use of out as a parameter-modifier and the use of Out in an attribute .

20.1.11 The InterfaceType attribute
When placed on an interface, the InterfaceType attribute specifies the manner in which the interface is
treated in COM.

[AttributeUsage(AttributeTargets.Interface)]
public class InterfaceTypeAttribute: System.Attribute
{

public InterfaceTypeAttribute(System.Interop.ComInterfaceType value)
{…}

public System.Interop.ComInterfaceType Value { get {…} }
}

20.1.12 The IsCOMRegisterFunction attribute
The presence of the IsCOMRegisterFunction attribute on a method indicates that the method should be
called during the COM registration process.

[AttributeUsage(AttributeTargets.Method)]
public class IsCOMRegisterFunctionAttribute: System.Attribute
{

public IsComRegisterFunctionAttribute() {…}

}

20.1.13 The Marshal attribute
The Marshal attribute is used to describe the marshalling format for a field, method, or parameter.

[AttributeUsage(AttributeTargets.Method |
AttributeTargets.Parameter |
AttributeTargets.Field)]

public class MarshalAttribute: System.Attribute
{

public MarshalAttribute(UnmanagedType type) {…}

public string Cookie;

Chapter 20 Interoperability

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 259

public Guid IID;

public Type Marshaler;

public UnmanagedType NativeType { get {…} }

public int Size;

public UnmanagedType SubType;
}

The Marshal attribute has the following behaviors:

• It can only be placed on field declarations, method declarations, and formal parameters.

• It has a single positional parameter of type UnmanagedType.

• It has five named parameters.

• The Cookie parameter gives a cookie that should be passed to the marshaler.

• The IID parameter gives the Guid for NativeType.Interface types.

• The Marshaler parameter specifies a marshaling class.

• The Size parameter describes the size of a fixed size array or string. (Issue: what value is returned for
other types?)

• The SubType parameter describes the subsidiary type for NativeType.Ptr and
NativeType.FixedArray types.

• It is a single-use attribute class.

20.1.14 The Name attribute
The Name attribute is used to specify the property name that underlies an indexer in .NET. If no Name attribute
is specified, then the property is named Item.

[AttributeUsage(AttributeTargets.Indexer)]
public class NameAttribute: System.Attribute
{

public NameAttribute(string value) {…}

public string Value { get {…} }

}

The identifier must be a legal C# identifier. Otherwise, a compile-time error occurs.

20.1.15 The NoIDispatch attribute
The presence of the NoIDispatch attribute indicates that the class or interface should derive from IUnknown
rather than IDispatch when exported to COM.

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Interface)]
public class NoIDispatchAttribute: System.Attribute
{

public NoIDispatchAttribute() {…}
}

20.1.16 The NonSerialized attribute
The presence of the NonSerialized attribute on a field or property indicates that that field or property should
not be serialized.

C# LANGUAGE REFERENCE

260 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

[AttributeUsage(AttributeTargets.Field | AttributeTargets.Property)]
public class NonSerializedAttribute: System.Attribute
{

public NonSerializedAttribute() {…}
}

20.1.17 The Predeclared attribute
The presence of the Predeclared attribute denotes a predeclared object imported from COM.

[AttributeUsage(Attribute(AttributeTargets.Class)]
public class PredeclaredAttribute: System.Attribute
{

public PredeclaredAttribute() {…}
}

20.1.18 The ReturnsHResult attribute
The ReturnsHResult attribute is used to mark a method as returning an HRESULT result in COM .

[AttributeUsage(AttributeTargets.Method | AttributeTargets.Property)]
public class ReturnsHResultAttribute: System.Attribute
{

public ReturnsHResultAttribute(bool value) {…}

public bool Value { get {…} }
}

A method that is decorated with the ReturnsHResult attribute must not have a body. Thus, the
ReturnsHResult attribute may be placed on an interface method or on an extern class methods that have the
extern modifier. A compile-time error occurs if any other method declaration includes the ReturnsHResult
attribute.

The example

class interface Interface1
{

[ReturnsHResult]
int M(int x, int y);

}

declares that the M method of Interface1 returns an HRESULT. The corresponding COM signature for M is a
method that takes three arguments (the two int arguments x and y plus a third argument of type int* that is
used for the return value) and returns an HRESULT.

20.1.19 The Serializable attribute
The presence of the Serializable attribute on a class indicates that the class can be serialized..

[AttributeUsage(AttributeTargets.Class
| AttributeTargets.Delegate
| AttributeTargets.Enum
| AttributeTargets.Struct)]

public class SerializableAttribute: System.Attribute
{

public SerializableAttribute() {…}
}

20.1.20 The StructLayout attribute
The StructLayout attribute is used to specify the layout of fields for the struct.

Chapter 20 Interoperability

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 261

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct)]
public class StructLayoutAttribute: System.Attribute
{
 public StructLayoutAttribute(LayoutKind kind) {…}

 public CharSet CharSet;

 public int Pack;

 public LayoutKind StructLayoutKind { get {…} }
}

The StructLayout attribute has the following behaviors:

• It can only be placed struct declarations.

• It has a positional parameter of type Layout.

• It has three named parameters:

• The CharSet named parameter indicates the default character set for containing char and string
types. The default is CharSet.Auto.

• The Pack named parameter indicates the packing size, in bytes. The packing size must be a power of
two. The default packing size is 4.

• It is a single-use attribute class.

If LayoutKind.Explicit is specified, then every field in the struct must have the StructOffset attribute.
If LayoutKind.Explicit is not specified, then use of the StructOffset attribute is prohibited.

20.1.21 The StructOffset attribute
The StructOffset attribute is used to specify the layout of fields for the struct.

[AttributeUsage(AttributeTargets.Field)]
public class StructOffsetAttribute: System.Attribute
{

public StructOffsetAttribute(int offset) {…}
}

The StructOffset attribute may not be placed on a field declarations that is a member of a class.

20.1.22 The TypeLibFunc attribute
The TypeLibFunc attribute is used to specify typelib flags, for interoperability with COM.

[AttributeUsage(AttributeTargets.Method)]
public class TypeLibFuncAttribute: System.Attribute
{

public TypeLibFuncAttribute(short value) {…}

public short Value { get {…} }
}

20.1.23 The TypeLibType attribute
The TypeLibType attribute is used to specify typelib flags, for interoperability with COM.

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Interface)]
public class TypeLibTypeAttribute: System.Attribute
{

public TypeLibTypeAttribute(short value) {…}

public short Value { get {…} }
}

C# LANGUAGE REFERENCE

262 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

20.1.24 The TypeLibVar attribute
The TypeLibVar attribute is used to specify typelib flags, for interoperability with COM.

[AttributeUsage(AttributeTargets.Field)]
public class TypeLibVarAttribute: System.Attribute
{

public TypeLibVarAttribute(short value) {…}

public short Value { get {…} }
}

20.2 Supporting enums
namespace System.Interop {

public enum CallingConvention
{

WinAPI = 1,
Cdecl = 2,
Stdcall = 3,
Thiscall = 4,
Fastcall = 5

}

public enum CharSet
{

None
Auto,
Ansi,
Unicode

}

public enum ComInterfaceType
{

Dual = 0,
IUnknown = 1,
IDispatch = 2,

}

public enum COMVisibility
{

VisibilityDefault = 0,
VisibilityOmitted = 1,

}

public enum LayoutKind
{
 Sequential,
 Union,
 Explicit,
}

Chapter 20 Interoperability

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 263

public enum UnmanagedType
{

Bool = 0x2,
I1 = 0x3,
U1 = 0x4,
I2 = 0x5,
U2 = 0x6,
I4 = 0x7,
U4 = 0x8,
I8 = 0x9,
U8 = 0xa,
R4 = 0xb,
R8 = 0xc,
BStr = 0x13,
LPStr = 0x14,
LPWStr = 0x15,
LPTStr = 0x16,
ByValTStr = 0x17,
Struct = 0x1b,
Interface = 0x1c,
SafeArray = 0x1d,
ByValArray = 0x1e,
SysInt = 0x1f,
SysUInt = 0x20,
VBByRefStr = 0x22,
AnsiBStr = 0x23,
TBStr = 0x24,
VariantBool = 0x25,
FunctionPtr = 0x26,
LPVoid = 0x27,
AsAny = 0x28,
RPrecise = 0x29,
LPArray = 0x2a,
LPStruct = 0x2b,
CustomMarshaller = 0x2c,

}
}

Chapter 21 References

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 265

21. References

Unicode Consortium. The Unicode Standard, Version 3.0. Addison-Wesley, Reading, Massachusetts, 2000,
ISBN 0-201-616335-5.

IEEEE. IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Standard 754-1985. Available from
http://www.ieee.org.

ISO/IEC. C++. ANSI/ISO/IEC 14882:1998.

